Coen E. Linskens, Jelmer R. Reitsma, C. Borst, M. V. van Paassen, M. Mulder
{"title":"A Novel Automated Electronic Checklist for Non-Normal Event Resolution Tasks","authors":"Coen E. Linskens, Jelmer R. Reitsma, C. Borst, M. V. van Paassen, M. Mulder","doi":"10.2514/6.2021-1320","DOIUrl":null,"url":null,"abstract":"Non-normal event resolution in-flight can be challenging on the flight crew with increased time pressure, workload, stress. Other competing tasks impose a risk on flight safety and burdens the decision-making process. Pilots rely on checklists to aid in their effort, which in its state-of-the-art form are presented on the dedicated Electronic Checklist (ECL) display for Boeing aircraft and on the Electronic Centralised Aircraft Monitor (ECAM) system for Airbus aircraft. However, human-induced errors and limitations remain prevalent. Exploring a different approach from other research efforts, this paper proposes a novel design which assumes automated checklist handling as a viable option to reduce workload durning nonnormal events. In a human-in-the-loop experiment with 12 commercial pilots, the design was compared against a reproduced Boeing 787 ECL over two scenarios. A synthetic setup was used, assuming a touch-based Boeing 737-8 flight deck combined with the Boeing 787 state-of-the-art alerting systems and displays. Results indicate significant checklist completion time reductions with the proposed design of 31.3% and 42.0% for an electrical and hydraulic failure, respectively. Experienced workload and situation awareness remained unchanged, though compressed in a shorter time frame. The novel display was positively anticipated by participants but was found to lack automation feedback.","PeriodicalId":165313,"journal":{"name":"AIAA Scitech 2021 Forum","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Scitech 2021 Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2021-1320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-normal event resolution in-flight can be challenging on the flight crew with increased time pressure, workload, stress. Other competing tasks impose a risk on flight safety and burdens the decision-making process. Pilots rely on checklists to aid in their effort, which in its state-of-the-art form are presented on the dedicated Electronic Checklist (ECL) display for Boeing aircraft and on the Electronic Centralised Aircraft Monitor (ECAM) system for Airbus aircraft. However, human-induced errors and limitations remain prevalent. Exploring a different approach from other research efforts, this paper proposes a novel design which assumes automated checklist handling as a viable option to reduce workload durning nonnormal events. In a human-in-the-loop experiment with 12 commercial pilots, the design was compared against a reproduced Boeing 787 ECL over two scenarios. A synthetic setup was used, assuming a touch-based Boeing 737-8 flight deck combined with the Boeing 787 state-of-the-art alerting systems and displays. Results indicate significant checklist completion time reductions with the proposed design of 31.3% and 42.0% for an electrical and hydraulic failure, respectively. Experienced workload and situation awareness remained unchanged, though compressed in a shorter time frame. The novel display was positively anticipated by participants but was found to lack automation feedback.