Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture

Sudheer Chunduri, Prasanna Balaprakash, V. Morozov, V. Vishwanath, Kalyan Kumaran
{"title":"Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture","authors":"Sudheer Chunduri, Prasanna Balaprakash, V. Morozov, V. Vishwanath, Kalyan Kumaran","doi":"10.1145/3075564.3075593","DOIUrl":null,"url":null,"abstract":"Modeling the performance of scientific applications on emerging hardware plays a central role in achieving extreme-scale computing goals. Analytical models that capture the interaction between applications and hardware characteristics are attractive because even a reasonably accurate model can be useful for performance tuning before the hardware is made available. In this paper, we develop a hardware model for Intel's second-generation Xeon Phi architecture code-named Knights Landing (KNL) for the SKOPE framework. We validate the KNL hardware model by projecting the performance of minibenchmarks and application kernels. The results show that our KNL model can project the performance with prediction errors of 10% to 20%. The hardware model also provides informative recommendations for code transformations and tuning.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Modeling the performance of scientific applications on emerging hardware plays a central role in achieving extreme-scale computing goals. Analytical models that capture the interaction between applications and hardware characteristics are attractive because even a reasonably accurate model can be useful for performance tuning before the hardware is made available. In this paper, we develop a hardware model for Intel's second-generation Xeon Phi architecture code-named Knights Landing (KNL) for the SKOPE framework. We validate the KNL hardware model by projecting the performance of minibenchmarks and application kernels. The results show that our KNL model can project the performance with prediction errors of 10% to 20%. The hardware model also provides informative recommendations for code transformations and tuning.
英特尔至强Phi协处理器架构的分析性能建模与验证
在新兴硬件上对科学应用程序的性能进行建模在实现极端规模计算目标方面起着核心作用。捕获应用程序和硬件特征之间交互的分析模型很有吸引力,因为即使是相当精确的模型也可以在硬件可用之前用于性能调优。在本文中,我们为SKOPE框架开发了英特尔第二代Xeon Phi架构的硬件模型,代号为Knights Landing (KNL)。我们通过预测迷你基准测试和应用程序内核的性能来验证KNL硬件模型。结果表明,我们的KNL模型可以在10% ~ 20%的预测误差范围内预测性能。硬件模型还为代码转换和调优提供了信息丰富的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信