mSAIL

Inhee Lee, Roger Hsiao, G. Carichner, Chin-Wei Hsu, Mingyu Yang, Sara Shoouri, Katherine Ernst, Tess Carichner, Yuyang Li, Jaechan Lim, Cole R. Julick, Eunseong Moon, Yi Sun, Jamie Phillips, K. Montooth, D. A. Green, Hun-Seok Kim, D. Blaauw
{"title":"mSAIL","authors":"Inhee Lee, Roger Hsiao, G. Carichner, Chin-Wei Hsu, Mingyu Yang, Sara Shoouri, Katherine Ernst, Tess Carichner, Yuyang Li, Jaechan Lim, Cole R. Julick, Eunseong Moon, Yi Sun, Jamie Phillips, K. Montooth, D. A. Green, Hun-Seok Kim, D. Blaauw","doi":"10.1145/3447993.3483263","DOIUrl":null,"url":null,"abstract":"Each fall, millions of monarch butterflies across the northern US and Canada migrate up to 4,000 km to overwinter in the exact same cluster of mountain peaks in central Mexico. To track monarchs precisely and study their navigation, a monarch tracker must obtain daily localization of the butterfly as it progresses on its 3-month journey. And, the tracker must perform this task while having a weight in the tens of milligram (mg) and measuring a few millimeters (mm) in size to avoid interfering with monarch's flight. This paper proposes mSAIL, 8 × 8 × 2.6 mm and 62 mg embedded system for monarch migration tracking, constructed using 8 prior custom-designed ICs providing solar energy harvesting, an ultra-low power processor, light/temperature sensors, power management, and a wireless transceiver, all integrated and 3D stacked on a micro PCB with an 8 × 8 mm printed antenna. The proposed system is designed to record and compress light and temperature data during the migration path while harvesting solar energy for energy autonomy, and wirelessly transmit the data at the overwintering site in Mexico, from which the daily location of the butterfly can be estimated using a deep learning-based localization algorithm. A 2-day trial experiment of mSAIL attached on a live butterfly in an outdoor botanical garden demonstrates the feasibility of individual butterfly localization and tracking.","PeriodicalId":177431,"journal":{"name":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447993.3483263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Each fall, millions of monarch butterflies across the northern US and Canada migrate up to 4,000 km to overwinter in the exact same cluster of mountain peaks in central Mexico. To track monarchs precisely and study their navigation, a monarch tracker must obtain daily localization of the butterfly as it progresses on its 3-month journey. And, the tracker must perform this task while having a weight in the tens of milligram (mg) and measuring a few millimeters (mm) in size to avoid interfering with monarch's flight. This paper proposes mSAIL, 8 × 8 × 2.6 mm and 62 mg embedded system for monarch migration tracking, constructed using 8 prior custom-designed ICs providing solar energy harvesting, an ultra-low power processor, light/temperature sensors, power management, and a wireless transceiver, all integrated and 3D stacked on a micro PCB with an 8 × 8 mm printed antenna. The proposed system is designed to record and compress light and temperature data during the migration path while harvesting solar energy for energy autonomy, and wirelessly transmit the data at the overwintering site in Mexico, from which the daily location of the butterfly can be estimated using a deep learning-based localization algorithm. A 2-day trial experiment of mSAIL attached on a live butterfly in an outdoor botanical garden demonstrates the feasibility of individual butterfly localization and tracking.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信