Optimized task graph mapping on a many-core neuromorphic supercomputer

Indar Sugiarto, Pedro B. Campos, Nizar Dahir, G. Tempesti, S. Furber
{"title":"Optimized task graph mapping on a many-core neuromorphic supercomputer","authors":"Indar Sugiarto, Pedro B. Campos, Nizar Dahir, G. Tempesti, S. Furber","doi":"10.1109/HPEC.2017.8091066","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for improving the overall performance of a general purpose application running as a task graph on a many-core neuromorphic supercomputer. Our task graph framework is based on graceful degradation and amelioration paradigms that strive to achieve high reliability and performance by incorporating fault tolerance and task spawning features. The optimization is applied on an instance of the task graph by performing a soft load balancing on the data traffic between nodes in the graph. We implemented the framework and its optimization on SpiNNaker, a many-core neuromorphic platform containing a million ARM9 processing cores. We evaluate our method using several static mapping examples, where some of them were generated using an evolutionary algorithm. The experiment demonstrates that a performance improvement of up to 8.2% can be achieved when implementing our algorithm on a fully-utilized SpiNNaker communication infrastructure.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents an approach for improving the overall performance of a general purpose application running as a task graph on a many-core neuromorphic supercomputer. Our task graph framework is based on graceful degradation and amelioration paradigms that strive to achieve high reliability and performance by incorporating fault tolerance and task spawning features. The optimization is applied on an instance of the task graph by performing a soft load balancing on the data traffic between nodes in the graph. We implemented the framework and its optimization on SpiNNaker, a many-core neuromorphic platform containing a million ARM9 processing cores. We evaluate our method using several static mapping examples, where some of them were generated using an evolutionary algorithm. The experiment demonstrates that a performance improvement of up to 8.2% can be achieved when implementing our algorithm on a fully-utilized SpiNNaker communication infrastructure.
在多核神经形态超级计算机上优化任务图映射
本文提出了一种在多核神经形态超级计算机上以任务图形式运行的通用应用程序的整体性能改进方法。我们的任务图框架基于优雅的退化和改进范例,这些范例通过结合容错和任务生成特征来努力实现高可靠性和高性能。通过对图中节点之间的数据流量执行软负载平衡,将优化应用于任务图的实例。我们在SpiNNaker上实现了该框架及其优化,SpiNNaker是一个包含一百万个ARM9处理内核的多核神经形态平台。我们使用几个静态映射示例来评估我们的方法,其中一些示例是使用进化算法生成的。实验表明,在充分利用的SpiNNaker通信基础设施上实现我们的算法时,可以实现高达8.2%的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信