Identification of ARX Hammerstein Models based on Twin Support Vector Machine Regression

M. Aldhaifallah, K. Nisar
{"title":"Identification of ARX Hammerstein Models based on Twin Support Vector Machine Regression","authors":"M. Aldhaifallah, K. Nisar","doi":"10.1109/SSD.2016.7473657","DOIUrl":null,"url":null,"abstract":"In this paper we develop a new algorithm to identify Auto-Regressive Exogenous (ARX) input Hammerstein Models based on Twin Support Vector Machine Regression (TSVR). The model is determined by minimizing two ε-insensitive loss functions. One of them determines the ε1-insensitive down bound regressor while the other determines the ε1-insensitive up bound regressor. The algorithm is compared to Support Vector Machine (SVM) and Least Square Support Vector Machine (LSSVM) based algorithms using simulation.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we develop a new algorithm to identify Auto-Regressive Exogenous (ARX) input Hammerstein Models based on Twin Support Vector Machine Regression (TSVR). The model is determined by minimizing two ε-insensitive loss functions. One of them determines the ε1-insensitive down bound regressor while the other determines the ε1-insensitive up bound regressor. The algorithm is compared to Support Vector Machine (SVM) and Least Square Support Vector Machine (LSSVM) based algorithms using simulation.
基于双支持向量机回归的ARX Hammerstein模型辨识
本文提出了一种基于双支持向量机回归(TSVR)的自回归外生(ARX)输入Hammerstein模型识别算法。该模型通过最小化两个ε-不敏感损失函数来确定。其中一个决定ε1不敏感的下界回归量,而另一个决定ε1不敏感的上界回归量。通过仿真将该算法与基于支持向量机(SVM)和基于最小二乘支持向量机(LSSVM)的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信