Uma Introdução Amigável às Redes Neurais para Grafos

Tiago Silva, Amauri Holanda Souza Junior, Diego Parente Paiva Mesquita
{"title":"Uma Introdução Amigável às Redes Neurais para Grafos","authors":"Tiago Silva, Amauri Holanda Souza Junior, Diego Parente Paiva Mesquita","doi":"10.21528/lnlm-vol19-no2-art5","DOIUrl":null,"url":null,"abstract":"Graph neural networks have driven a series of recent developments in, e.g., drug discovery, recommender systems, and social network analysis. At their core, GNNs are designed to extract numerical representations for each node in a graph, recursively combining representations of neighboring nodes. This tutorial paper covers some popular and influential GNN models, and discusses their applications in different disciplines. We hope this work will help popularize GNNs in the local community, and foster scientific advances in machine learning and data science.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lnlm-vol19-no2-art5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph neural networks have driven a series of recent developments in, e.g., drug discovery, recommender systems, and social network analysis. At their core, GNNs are designed to extract numerical representations for each node in a graph, recursively combining representations of neighboring nodes. This tutorial paper covers some popular and influential GNN models, and discusses their applications in different disciplines. We hope this work will help popularize GNNs in the local community, and foster scientific advances in machine learning and data science.
图的神经网络的友好介绍
图神经网络已经推动了一系列最近的发展,例如药物发现、推荐系统和社会网络分析。gnn的核心是提取图中每个节点的数值表示,递归地组合相邻节点的表示。本文介绍了一些流行和有影响力的GNN模型,并讨论了它们在不同学科中的应用。我们希望这项工作将有助于gnn在当地社区的普及,并促进机器学习和数据科学的科学进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信