IRS Assisted Multiple User Detection for Uplink URLLC Non-Orthogonal Multiple Access

Lei Feng, Xiaoyu Que, Peng Yu, Wenjing Li, Xue-song Qiu
{"title":"IRS Assisted Multiple User Detection for Uplink URLLC Non-Orthogonal Multiple Access","authors":"Lei Feng, Xiaoyu Que, Peng Yu, Wenjing Li, Xue-song Qiu","doi":"10.1109/infocomwkshps50562.2020.9162705","DOIUrl":null,"url":null,"abstract":"Intelligent reflecting surface (IRS) has been recognized as a cost-effective technology to enhance spectrum and energy efficiency in the next generation (5G) wireless communication networks, which is expected to support stable transmission for ultra reliable and low latency communications (URLLC). This paper focuses on the usage of IRS in uplink URLLC system and proposes a compressive sensing based IRS assisted multiple user detection method to deal with the sparsity and relativity characteristic of user signal in URLLC system. Simulation results demonstrate that our proposed algorithm achieves better performance than that of other MUD algorithms with similar computational complexity in terms of reliability and low latency.","PeriodicalId":104136,"journal":{"name":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/infocomwkshps50562.2020.9162705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Intelligent reflecting surface (IRS) has been recognized as a cost-effective technology to enhance spectrum and energy efficiency in the next generation (5G) wireless communication networks, which is expected to support stable transmission for ultra reliable and low latency communications (URLLC). This paper focuses on the usage of IRS in uplink URLLC system and proposes a compressive sensing based IRS assisted multiple user detection method to deal with the sparsity and relativity characteristic of user signal in URLLC system. Simulation results demonstrate that our proposed algorithm achieves better performance than that of other MUD algorithms with similar computational complexity in terms of reliability and low latency.
用于上行URLLC非正交多址的IRS辅助多用户检测
智能反射面(IRS)被认为是提高下一代(5G)无线通信网络频谱和能源效率的高性价比技术,有望支持超可靠和低延迟通信(URLLC)的稳定传输。针对URLLC系统中用户信号的稀疏性和相关性特点,提出了一种基于压缩感知的IRS辅助多用户检测方法。仿真结果表明,该算法在可靠性和低延迟方面优于其他计算复杂度相近的MUD算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信