Bayesian Inference

F. Ronquist, P. Beerli
{"title":"Bayesian Inference","authors":"F. Ronquist, P. Beerli","doi":"10.4135/9780857020123.n32","DOIUrl":null,"url":null,"abstract":"The classical solution to the noise removal problem is the Wiener filter, which utilizes the second-order statistics of the Fourier decomposition. Subband decomposi-tions of natural images have significantly non-Gaussian higher-order point statistics; these statistics capture image properties that elude Fourier-based techniques. We develop a Bayesian estimator that is a natural exten-sion of the Wiener solution, and that exploits these higher-order statistics. The resulting nonlinear estimator performs a “coring” operation. We provide a simple model for the subband statistics, and use it to develop a semi-blind noise-removal algorithm based on a steerable wavelet pyramid. common","PeriodicalId":430973,"journal":{"name":"Computer Age Statistical Inference, Student Edition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Age Statistical Inference, Student Edition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4135/9780857020123.n32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The classical solution to the noise removal problem is the Wiener filter, which utilizes the second-order statistics of the Fourier decomposition. Subband decomposi-tions of natural images have significantly non-Gaussian higher-order point statistics; these statistics capture image properties that elude Fourier-based techniques. We develop a Bayesian estimator that is a natural exten-sion of the Wiener solution, and that exploits these higher-order statistics. The resulting nonlinear estimator performs a “coring” operation. We provide a simple model for the subband statistics, and use it to develop a semi-blind noise-removal algorithm based on a steerable wavelet pyramid. common
贝叶斯推理
噪声去除问题的经典解决方案是利用傅里叶分解的二阶统计量的维纳滤波器。自然图像的子带分解具有明显的非高斯高阶点统计量;这些统计数据捕获了基于傅里叶的技术无法捕获的图像属性。我们开发了一个贝叶斯估计器,它是维纳解的自然扩展,并且利用了这些高阶统计量。得到的非线性估计器执行“取心”操作。我们提供了一个简单的子带统计模型,并利用它开发了一种基于可控小波金字塔的半盲去噪算法。常见的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信