Redundancy Removing by Adaptive Acceleration and Event Clustering for Video Summarization

Emilie Dumont, B. Mérialdo
{"title":"Redundancy Removing by Adaptive Acceleration and Event Clustering for Video Summarization","authors":"Emilie Dumont, B. Mérialdo","doi":"10.1109/WIAMIS.2008.13","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach to summarize rushes. Our processing is composed of several steps. First, we remove unusable content and we dynamically accelerate video according to motion activity to maximize the content per time unit. Then, one-second video segments are clustered into similarity clusters. The most important nonredundant pieces of shot are selected such that they maximize the coverage of those similarity clusters. The produced summaries have been evaluated by an automatic method with a strong positive correlation with the TRECVID campaign evaluation.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a novel approach to summarize rushes. Our processing is composed of several steps. First, we remove unusable content and we dynamically accelerate video according to motion activity to maximize the content per time unit. Then, one-second video segments are clustered into similarity clusters. The most important nonredundant pieces of shot are selected such that they maximize the coverage of those similarity clusters. The produced summaries have been evaluated by an automatic method with a strong positive correlation with the TRECVID campaign evaluation.
基于自适应加速和事件聚类的视频摘要冗余去除
在本文中,我们提出了一种新的方法来总结rush。我们的处理由几个步骤组成。首先,我们删除无用的内容,并根据动作活动动态加速视频,使每单位时间内的内容最大化。然后,将一秒视频片段聚类到相似聚类中。选择最重要的非冗余的镜头片段,使它们最大限度地覆盖这些相似簇。生成的摘要已通过与TRECVID活动评估具有强正相关的自动方法进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信