Dots & Boxes is PSPACE-complete

K. Buchin, Mart Hagedoorn, I. Kostitsyna, Max van Mulken
{"title":"Dots & Boxes is PSPACE-complete","authors":"K. Buchin, Mart Hagedoorn, I. Kostitsyna, Max van Mulken","doi":"10.4230/LIPIcs.MFCS.2021.25","DOIUrl":null,"url":null,"abstract":"Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots&Boxes is PSPACE-complete. Dots&Boxes has been studied extensively, with for instance a chapter in Berlekamp et al.\"Winning Ways for Your Mathematical Plays\", a whole book on the game\"The Dots and Boxes Game: Sophisticated Child's Play\"by Berlekamp, and numerous articles in the\"Games of No Chance\"series. While known to be NP-hard, the question of its complexity remained open. We resolve this question, proving that the game is PSPACE-complete by a reduction from a game played on propositional formulas.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2021.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots&Boxes is PSPACE-complete. Dots&Boxes has been studied extensively, with for instance a chapter in Berlekamp et al."Winning Ways for Your Mathematical Plays", a whole book on the game"The Dots and Boxes Game: Sophisticated Child's Play"by Berlekamp, and numerous articles in the"Games of No Chance"series. While known to be NP-hard, the question of its complexity remained open. We resolve this question, proving that the game is PSPACE-complete by a reduction from a game played on propositional formulas.
Dots & Boxes是pspace完成的
就在20年前的MFCS大会上,Demaine提出了一个开放性的问题,即《Dots&Boxes》是否符合pspace。点与盒子已经被广泛研究,例如Berlekamp等人的一章。《数学游戏的制胜之道》,一本关于游戏的书《圆点和盒子游戏:复杂的儿童游戏》,由Berlekamp著,以及“没有机会的游戏”系列中的许多文章。虽然已知是np困难的,但其复杂性的问题仍然悬而未决。我们解决了这个问题,通过一个在命题公式上的博弈的约化证明了这个博弈是pspace完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信