Bagging Ensemble Classifier for Predicting Lightning Flashovers on Distribution Lines

P. Sarajcev
{"title":"Bagging Ensemble Classifier for Predicting Lightning Flashovers on Distribution Lines","authors":"P. Sarajcev","doi":"10.23919/SpliTech55088.2022.9854317","DOIUrl":null,"url":null,"abstract":"This paper introduces a bagging ensemble classifier, built from support vector machines (SVM), for predicting lightning flashovers on overhead distribution lines (OHL). Support vectors from the underlying SVM give rise to the so-called curve of limiting parameters (CLP), which features prominently in the statistical method of insulation coordination. Proposed machine learning-based approach enables a straightforward derivation of the line's CLP-from simulations or actual measurements data gathered by the lightning location systems-for its subsequent use in insulation coordination studies. It also facilitates computing the risk of insulation flashover. Both these aspects fully endorse statistical approach to the insulation coordination and flashover performance analysis of OHLs.","PeriodicalId":295373,"journal":{"name":"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SpliTech55088.2022.9854317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a bagging ensemble classifier, built from support vector machines (SVM), for predicting lightning flashovers on overhead distribution lines (OHL). Support vectors from the underlying SVM give rise to the so-called curve of limiting parameters (CLP), which features prominently in the statistical method of insulation coordination. Proposed machine learning-based approach enables a straightforward derivation of the line's CLP-from simulations or actual measurements data gathered by the lightning location systems-for its subsequent use in insulation coordination studies. It also facilitates computing the risk of insulation flashover. Both these aspects fully endorse statistical approach to the insulation coordination and flashover performance analysis of OHLs.
配电网雷电闪络预测的Bagging集成分类器
本文介绍了一种基于支持向量机(SVM)的袋装集成分类器,用于预测架空配电线路雷电闪络。来自底层支持向量机的支持向量产生了所谓的极限参数曲线(CLP),这在绝缘协调的统计方法中具有突出的特点。提出的基于机器学习的方法可以从闪电定位系统收集的模拟或实际测量数据中直接推导出线路的clp,以便随后在绝缘协调研究中使用。它还有助于计算绝缘闪络的风险。这两个方面都充分支持了ohl绝缘协调和闪络性能分析的统计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信