{"title":"One Tree Suffices: A Simultaneous O(1)-Approximation for Single-Sink Buy-at-Bulk","authors":"Ashish Goel, Ian Post","doi":"10.4086/toc.2012.v008a015","DOIUrl":null,"url":null,"abstract":"We study the single-sink buy-at-bulk problem with an unknown cost function. We wish to route flow from a set of demand nodes to a root node, where the cost of routing x total flow along an edge is proportional to f(x) for some concave, non-decreasing function f satisfying f(0)=0. We present a simple, fast, combinatorial algorithm that takes a set of demands and constructs a single tree T such that for all f the cost f(T) is a 47.45-approximation of the optimal cost for that f. This is within a factor of 2.33 of the best approximation ratio currently achievable when the tree can be optimized for a specific function. Trees achieving simultaneous O(1)-approximations for all concave functions were previously not known to exist regardless of computation time.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4086/toc.2012.v008a015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We study the single-sink buy-at-bulk problem with an unknown cost function. We wish to route flow from a set of demand nodes to a root node, where the cost of routing x total flow along an edge is proportional to f(x) for some concave, non-decreasing function f satisfying f(0)=0. We present a simple, fast, combinatorial algorithm that takes a set of demands and constructs a single tree T such that for all f the cost f(T) is a 47.45-approximation of the optimal cost for that f. This is within a factor of 2.33 of the best approximation ratio currently achievable when the tree can be optimized for a specific function. Trees achieving simultaneous O(1)-approximations for all concave functions were previously not known to exist regardless of computation time.