Point representation for local optimization

S. Baluja, Michele Covell
{"title":"Point representation for local optimization","authors":"S. Baluja, Michele Covell","doi":"10.1109/CEC.2013.6557661","DOIUrl":null,"url":null,"abstract":"In the context of stochastic search, once regions of high performance are found, having the property that small changes in the candidate solution correspond to searching nearby neighborhoods provides the ability to perform effective local optimization. To achieve this, Gray Codes are often employed for encoding ordinal points or discretized real numbers. In this paper, we present a method to label similar and/or close points within arbitrary graphs with small Hamming distances. The resultant point labels can be viewed as an approximate high-dimensional variant of Gray Codes. The labeling procedure is useful for any task in which the solution requires the search algorithm to select a small subset of items out of many. A large number of empirical results using these encodings with a combination of genetic algorithms and hill-climbing are presented.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of stochastic search, once regions of high performance are found, having the property that small changes in the candidate solution correspond to searching nearby neighborhoods provides the ability to perform effective local optimization. To achieve this, Gray Codes are often employed for encoding ordinal points or discretized real numbers. In this paper, we present a method to label similar and/or close points within arbitrary graphs with small Hamming distances. The resultant point labels can be viewed as an approximate high-dimensional variant of Gray Codes. The labeling procedure is useful for any task in which the solution requires the search algorithm to select a small subset of items out of many. A large number of empirical results using these encodings with a combination of genetic algorithms and hill-climbing are presented.
局部优化的点表示
在随机搜索环境中,一旦找到高性能区域,候选解的微小变化对应于搜索附近邻域的特性提供了执行有效的局部优化的能力。为了达到这个目的,经常使用灰色编码来编码有序点或离散实数。在本文中,我们提出了一种在具有小汉明距离的任意图中标记相似点和/或接近点的方法。所得的点标签可以看作是格雷码的近似高维变体。标记过程对于解决方案需要搜索算法从许多项中选择一小部分项的任何任务都是有用的。大量的经验结果使用这些编码与遗传算法和爬坡结合提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信