Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis

Stephen G. MacDonell, A. Gray, G. MacLennan, P. Sallis
{"title":"Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis","authors":"Stephen G. MacDonell, A. Gray, G. MacLennan, P. Sallis","doi":"10.1109/ICONIP.1999.843963","DOIUrl":null,"url":null,"abstract":"Software forensics is the field that, by treating pieces of program source code as linguistically and stylistically analyzable entities, attempts to investigate computer program authorship. This can be performed with the goal of identification, discrimination, or characterization of authors. In this paper we extract a set of 26 standard authorship metrics from 351 programs by 7 different authors. The use of feedforward neural networks, multiple discriminant analysis, and case-based reasoning is then investigated in terms of classification accuracy for the authors on both training and testing samples. The first two techniques produce remarkably similar results, with the best results coming from the case-based reasoning models. All techniques have high prediction accuracy rates, supporting the feasibility of the task of discriminating program authors based on source-code measurements.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.843963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Software forensics is the field that, by treating pieces of program source code as linguistically and stylistically analyzable entities, attempts to investigate computer program authorship. This can be performed with the goal of identification, discrimination, or characterization of authors. In this paper we extract a set of 26 standard authorship metrics from 351 programs by 7 different authors. The use of feedforward neural networks, multiple discriminant analysis, and case-based reasoning is then investigated in terms of classification accuracy for the authors on both training and testing samples. The first two techniques produce remarkably similar results, with the best results coming from the case-based reasoning models. All techniques have high prediction accuracy rates, supporting the feasibility of the task of discriminating program authors based on source-code measurements.
使用基于案例的推理、前馈神经网络和多重判别分析来区分程序作者的软件取证
软件取证是一个领域,通过将程序源代码片段作为语言和风格上可分析的实体来处理,试图调查计算机程序的作者身份。这可以用于识别、区分或描述作者的特征。在本文中,我们从7位不同作者的351个项目中提取了一组26个标准作者身份指标。使用前馈神经网络、多重判别分析和基于案例的推理,然后研究了作者在训练和测试样本上的分类准确性。前两种技术产生了非常相似的结果,其中最好的结果来自基于案例的推理模型。所有技术都具有很高的预测准确率,支持基于源代码测量来区分程序作者的任务的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信