Evolutionary voting kernel machines for cyclooxygenase-2 inhibitor activity comparisons

Bo Jin, Yanqing Zhang
{"title":"Evolutionary voting kernel machines for cyclooxygenase-2 inhibitor activity comparisons","authors":"Bo Jin, Yanqing Zhang","doi":"10.1109/GRC.2006.1635891","DOIUrl":null,"url":null,"abstract":"With the growing interest of biological data prediction and chemical data prediction, more complicated kernels are designed to measure data similarities. In (1), we proposed a kind of evolutionary granular kernel trees (EGKTs) for drug activity comparisons. In EGKTs, feature granules and tree structures are predefined based on the possible substituent locations. In (2), we proposed a granular kernel tree structure evolving system (GKTSES) to evolve the structures of GKTs in the case that we lack knowledge to predefine kernel trees. In this paper, evolutionary voting kernel machines (EVKMs) are presented based on GKTSES. Experimental results show that EVKMs are more stable than GKTSES in cyclooxygenase-2 inhibitor activity comparisons. Index Terms—Drug activity comparisons, kernel, genetic algorithms, granular kernel trees, support vector machines.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the growing interest of biological data prediction and chemical data prediction, more complicated kernels are designed to measure data similarities. In (1), we proposed a kind of evolutionary granular kernel trees (EGKTs) for drug activity comparisons. In EGKTs, feature granules and tree structures are predefined based on the possible substituent locations. In (2), we proposed a granular kernel tree structure evolving system (GKTSES) to evolve the structures of GKTs in the case that we lack knowledge to predefine kernel trees. In this paper, evolutionary voting kernel machines (EVKMs) are presented based on GKTSES. Experimental results show that EVKMs are more stable than GKTSES in cyclooxygenase-2 inhibitor activity comparisons. Index Terms—Drug activity comparisons, kernel, genetic algorithms, granular kernel trees, support vector machines.
环氧化酶-2抑制剂活性比较的进化投票核机
随着人们对生物数据预测和化学数据预测的兴趣日益浓厚,人们设计了更复杂的核函数来度量数据的相似性。在(1)中,我们提出了一种用于药物活性比较的进化颗粒核树(EGKTs)。在egkt中,特征颗粒和树形结构是基于可能的取代基位置预定义的。在(2)中,我们提出了一种颗粒核树结构进化系统(GKTSES),用于在我们缺乏预定义核树知识的情况下进化gkt的结构。本文提出了基于GKTSES的进化投票核机(evkm)。实验结果表明,在环氧化酶-2抑制剂活性比较中,evkm比GKTSES更稳定。索引术语:药物活性比较,核,遗传算法,颗粒核树,支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信