Nanofork and Line-patterned Substrate for measuring single cells adhesion force inside ESEM

M. Ahmad, M. Nakajima, M. Kojima, S. Kojima, M. Homma, T. Fukuda
{"title":"Nanofork and Line-patterned Substrate for measuring single cells adhesion force inside ESEM","authors":"M. Ahmad, M. Nakajima, M. Kojima, S. Kojima, M. Homma, T. Fukuda","doi":"10.1109/NANO.2010.5697764","DOIUrl":null,"url":null,"abstract":"In this paper, single cell adhesion force was measured using a nanofork. The nanofork was used to pick-up a single cell on a line-patterned substrate inside ESEM. The line-patterned substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick-up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line-patterned substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line-patterned substrate were used, i.e. 1 µm and 2 µm. Results showed that cells attached on the 1 µm gap line-patterned substrate required more force to be released as compared to the cells attached on the 2 µm gap line-patterned substrate.","PeriodicalId":254587,"journal":{"name":"10th IEEE International Conference on Nanotechnology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2010.5697764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, single cell adhesion force was measured using a nanofork. The nanofork was used to pick-up a single cell on a line-patterned substrate inside ESEM. The line-patterned substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick-up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line-patterned substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line-patterned substrate were used, i.e. 1 µm and 2 µm. Results showed that cells attached on the 1 µm gap line-patterned substrate required more force to be released as compared to the cells attached on the 2 µm gap line-patterned substrate.
用于测量ESEM内单细胞粘附力的纳米叉和线形衬底
本文用纳米叉子测量了单细胞的粘附力。纳米叉子被用来拾取ESEM内部线条图案衬底上的单个细胞。线条图案的衬底用于在单个细胞和衬底之间提供小的间隙。因此,纳米叉子可以通过这些间隙插入,以便成功地拾取单个细胞。在细胞拾取过程中,通过悬臂梁的挠度测量附着力。采用聚焦离子束(FIB)蚀刻工艺制备纳米叉子,采用纳米印迹技术制备线形衬底。为了研究接触面积对附着力强度的影响,我们采用了两种尺寸的线形衬底间隙距离,分别为1µm和2µm。结果表明,与附着在2µm间隙线衬底上的细胞相比,附着在1µm间隙线衬底上的细胞需要释放更多的力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信