Clustering of symbolic interval data based on a single adaptive L1 distance

F. D. Carvalho, Julio T. Pimentel, Lucas X. T. Bezerra
{"title":"Clustering of symbolic interval data based on a single adaptive L1 distance","authors":"F. D. Carvalho, Julio T. Pimentel, Lucas X. T. Bezerra","doi":"10.1109/IJCNN.2007.4370959","DOIUrl":null,"url":null,"abstract":"The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a dynamic clustering method to partitioning symbolic interval data. This method furnishes a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method uses a single adaptive L1 distance that at each iteration changes but is the same for all the clusters. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4370959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a dynamic clustering method to partitioning symbolic interval data. This method furnishes a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method uses a single adaptive L1 distance that at each iteration changes but is the same for all the clusters. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.
基于单一自适应L1距离的符号区间数据聚类
随着数据库技术的发展,符号间隔数据的记录已经成为一种普遍的做法。介绍了一种动态聚类方法对符号区间数据进行划分。该方法通过优化衡量集群与其代表之间拟合的充分性标准,为每个集群提供分区和原型。为了比较符号间隔数据,该方法使用单个自适应L1距离,该距离在每次迭代中都会改变,但对所有聚类都是相同的。在真实和合成符号区间数据集上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信