Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality

Jun Hu, Zhankui Xiao
{"title":"Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality","authors":"Jun Hu, Zhankui Xiao","doi":"10.1090/btran/84","DOIUrl":null,"url":null,"abstract":"<p>In this paper we use the dominant dimension with respect to a tilting module to study the double centraliser property. We prove that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a quasi-hereditary algebra with a simple preserving duality and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a faithful tilting <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-module, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has the double centralizer property with respect to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This provides a simple and useful criterion which can be applied in many situations in algebraic Lie theory. We affirmatively answer a question of Mazorchuk and Stroppel by proving the existence of a unique minimal basic tilting module <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A equals upper E n d Subscript upper E n d Sub Subscript upper A Subscript left-parenthesis upper T right-parenthesis Baseline left-parenthesis upper T right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>A</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>E</mml:mi>\n <mml:mi>n</mml:mi>\n <mml:msub>\n <mml:mi>d</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>E</mml:mi>\n <mml:mi>n</mml:mi>\n <mml:msub>\n <mml:mi>d</mml:mi>\n <mml:mi>A</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>T</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A=End_{End_A(T)}(T)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As an application, we establish a Schur-Weyl duality between the symplectic Schur algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S Subscript upper K Superscript s y Baseline left-parenthesis m comma n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>S</mml:mi>\n <mml:mi>K</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>s</mml:mi>\n <mml:mi>y</mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S_K^{sy}(m,n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the Brauer algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German upper B Subscript n Baseline left-parenthesis minus 2 m right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">B</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>m</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathfrak {B}_n(-2m)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the space of dual partially harmonic tensors under certain condition.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we use the dominant dimension with respect to a tilting module to study the double centraliser property. We prove that if A A is a quasi-hereditary algebra with a simple preserving duality and T T is a faithful tilting A A -module, then A A has the double centralizer property with respect to T T . This provides a simple and useful criterion which can be applied in many situations in algebraic Lie theory. We affirmatively answer a question of Mazorchuk and Stroppel by proving the existence of a unique minimal basic tilting module T T over A A for which A = E n d E n d A ( T ) ( T ) A=End_{End_A(T)}(T) . As an application, we establish a Schur-Weyl duality between the symplectic Schur algebra S K s y ( m , n ) S_K^{sy}(m,n) and the Brauer algebra B n ( 2 m ) \mathfrak {B}_n(-2m) on the space of dual partially harmonic tensors under certain condition.

倾斜模,主导维数和Brauer-Schur-Weyl对偶
本文利用倾斜模的优势维数研究了双扶正器的性质。证明了如果A A是一个具有简单保持对偶性的拟遗传代数,T T是一个忠实的倾斜A -模,则A A对T T具有双中心化性质。这提供了一个简单而有用的判据,可应用于代数李理论的许多情况。我们肯定地回答了Mazorchuk和Stroppel的一个问题,证明了在a a上存在一个唯一的最小基本倾斜模T T,其中a = en和en并且a (T) (T) a =End_{End_A(T)}(T)。作为应用,在一定条件下,我们在对偶部分调和张量空间上建立了辛舒尔代数S K S y (m,n) S_K^{sy}(m,n)与Brauer代数B n(-2m)之间的Schur- weyl对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信