News Popularity Prediction Using Topic Modelling

K. Yakunin, S. Murzakhmetov, R. Musabayev, R. Mukhamediyev
{"title":"News Popularity Prediction Using Topic Modelling","authors":"K. Yakunin, S. Murzakhmetov, R. Musabayev, R. Mukhamediyev","doi":"10.1109/SIST50301.2021.9465884","DOIUrl":null,"url":null,"abstract":"The tasks of Natural Language Processing (hereinafter - NLP) are very topical today, in particular in the context of the application of machine learning and artificial intelligence models. In this work the approach allowing to carry out classification of texts with the minimal required manual markup is considered. The problem of prediction of resonance of news in the Kazakhstani media space where resonance is understood as abnormal interest of the public to the publication within the limits of a concrete information source is considered. The proposed model is implemented and tested within an informational system.","PeriodicalId":318915,"journal":{"name":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST50301.2021.9465884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The tasks of Natural Language Processing (hereinafter - NLP) are very topical today, in particular in the context of the application of machine learning and artificial intelligence models. In this work the approach allowing to carry out classification of texts with the minimal required manual markup is considered. The problem of prediction of resonance of news in the Kazakhstani media space where resonance is understood as abnormal interest of the public to the publication within the limits of a concrete information source is considered. The proposed model is implemented and tested within an informational system.
基于主题建模的新闻流行度预测
自然语言处理(以下简称NLP)的任务是当今非常热门的话题,特别是在机器学习和人工智能模型应用的背景下。在这项工作中,考虑了允许以最小的手动标记进行文本分类的方法。在哈萨克斯坦的媒体空间中,新闻的共鸣被理解为公众在特定资讯来源范围内对出版物的异常兴趣,因此预测新闻共鸣的问题也被考虑在内。所提出的模型在一个信息系统中被实现和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信