An opinion-unaware blind quality assessment algorithm for multiply distorted images

Tongle Wang, Junchen Deng
{"title":"An opinion-unaware blind quality assessment algorithm for multiply distorted images","authors":"Tongle Wang, Junchen Deng","doi":"10.1117/12.2559541","DOIUrl":null,"url":null,"abstract":"The blind image quality assessment algorithms produced every year are mostly “opinion-aware” (OA). It means that they require large numbers of subjective quality scores for regression model training. Subjective quality scores are not easily available, so people are eager to design an opinion-unaware (OU) algorithm which has free subjective quality scores. Besides, the OU algorithm has greater generalization capability than the OA algorithm. Therefore, we propose an OU algorithm based on a visual codebook for multiply distorted image quality assessment. Extensive experiments conducted on the three databases demonstrate that the proposed method is superior to the existing five OU methods in terms of the coherence with the human subjective rating. The MATLAB code is available at https://tonglewang.github.io.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2559541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The blind image quality assessment algorithms produced every year are mostly “opinion-aware” (OA). It means that they require large numbers of subjective quality scores for regression model training. Subjective quality scores are not easily available, so people are eager to design an opinion-unaware (OU) algorithm which has free subjective quality scores. Besides, the OU algorithm has greater generalization capability than the OA algorithm. Therefore, we propose an OU algorithm based on a visual codebook for multiply distorted image quality assessment. Extensive experiments conducted on the three databases demonstrate that the proposed method is superior to the existing five OU methods in terms of the coherence with the human subjective rating. The MATLAB code is available at https://tonglewang.github.io.
一种不受意见影响的多重失真图像质量盲评估算法
每年产生的盲图像质量评价算法大多是“意见感知”(OA)算法。这意味着他们需要大量的主观质量分数来进行回归模型训练。主观质量分数难以获得,因此人们渴望设计一种具有自由主观质量分数的意见不知情(OU)算法。此外,OU算法比OA算法具有更强的泛化能力。因此,我们提出了一种基于视觉码本的OU算法,用于多重失真图像的质量评估。在三个数据库上进行的大量实验表明,该方法在与人类主观评价的一致性方面优于现有的五种OU方法。MATLAB代码可从https://tonglewang.github.io获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信