Credit Card Fraud Detection System based on Operational & Transaction features using SVM and Random Forest Classifiers

C. Sudha, D. Akila
{"title":"Credit Card Fraud Detection System based on Operational & Transaction features using SVM and Random Forest Classifiers","authors":"C. Sudha, D. Akila","doi":"10.1109/ICCAKM50778.2021.9357709","DOIUrl":null,"url":null,"abstract":"This paper proposes a Credit Card Fraud Detection system based on Operational & Transaction features using Support Vector Machine (SVM) and Random Forest (RF) classifiers. In this system, in the first phase, the operational features of users are extracted, and then a random forest classifier is used to classify the features into benign and suspected. In the second phase, the transaction features of users are extracted from the user records, and then the M-class SVM classifier is applied to classify the features into benign and suspected. The performance of the system is evaluated in terms of standard measures precision, accuracy, recall, and F-1 score. By results, it was shown that both RF and SVM classifiers achieve a higher detection rate with good accuracy.","PeriodicalId":165854,"journal":{"name":"2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAKM50778.2021.9357709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a Credit Card Fraud Detection system based on Operational & Transaction features using Support Vector Machine (SVM) and Random Forest (RF) classifiers. In this system, in the first phase, the operational features of users are extracted, and then a random forest classifier is used to classify the features into benign and suspected. In the second phase, the transaction features of users are extracted from the user records, and then the M-class SVM classifier is applied to classify the features into benign and suspected. The performance of the system is evaluated in terms of standard measures precision, accuracy, recall, and F-1 score. By results, it was shown that both RF and SVM classifiers achieve a higher detection rate with good accuracy.
基于支持向量机和随机森林分类器的操作和交易特征的信用卡欺诈检测系统
本文利用支持向量机(SVM)和随机森林(RF)分类器,提出了一种基于操作和交易特征的信用卡欺诈检测系统。在该系统中,首先提取用户的操作特征,然后使用随机森林分类器将这些特征分为良性和可疑两类。第二阶段,从用户记录中提取用户的交易特征,然后使用m类SVM分类器将特征分为良性和可疑两类。系统的性能是根据标准测量的精度、准确性、召回率和F-1分数来评估的。结果表明,射频分类器和支持向量机分类器均具有较高的检测率和较好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信