PhD Forum Abstract: Efficient Computing and Communication Paradigms for Federated Learning Data Streams

S. Bano
{"title":"PhD Forum Abstract: Efficient Computing and Communication Paradigms for Federated Learning Data Streams","authors":"S. Bano","doi":"10.1109/SMARTCOMP52413.2021.00086","DOIUrl":null,"url":null,"abstract":"In this work, we proposed an integration of Federated Learning with Apache Kafka, an open-source framework that enables the management of continuous data streams with fault tolerance, low latency, and horizontal scalability. Our main focus is to evaluate the impact of learning delays and network overhead when hundred of users are sending their model updates for the aggregation to improve the global model in Federated Learning.","PeriodicalId":330785,"journal":{"name":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP52413.2021.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we proposed an integration of Federated Learning with Apache Kafka, an open-source framework that enables the management of continuous data streams with fault tolerance, low latency, and horizontal scalability. Our main focus is to evaluate the impact of learning delays and network overhead when hundred of users are sending their model updates for the aggregation to improve the global model in Federated Learning.
摘要:联邦学习数据流的高效计算和通信范式
在这项工作中,我们提出了联邦学习与Apache Kafka的集成,Kafka是一个开源框架,可以管理具有容错、低延迟和水平可扩展性的连续数据流。我们的主要重点是评估当数百个用户向聚合发送模型更新以改进联邦学习中的全局模型时,学习延迟和网络开销的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信