AutoAblation

Sina Sheikholeslami, Moritz Meister, Tianze Wang, A. H. Payberah, Vladimir Vlassov, J. Dowling
{"title":"AutoAblation","authors":"Sina Sheikholeslami, Moritz Meister, Tianze Wang, A. H. Payberah, Vladimir Vlassov, J. Dowling","doi":"10.1145/3437984.3458834","DOIUrl":null,"url":null,"abstract":"Ablation studies provide insights into the relative contribution of different architectural and regularization components to machine learning models' performance. In this paper, we introduce AutoAblation, a new framework for the design and parallel execution of ablation experiments. AutoAblation provides a declarative approach to defining ablation experiments on model architectures and training datasets, and enables the parallel execution of ablation trials. This reduces the execution time and allows more comprehensive experiments by exploiting larger amounts of computational resources. We show that AutoAblation can provide near-linear scalability by performing an ablation study on the modules of the Inception-v3 network trained on the TenGeoPSAR dataset.","PeriodicalId":269840,"journal":{"name":"Proceedings of the 1st Workshop on Machine Learning and Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Machine Learning and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437984.3458834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Ablation studies provide insights into the relative contribution of different architectural and regularization components to machine learning models' performance. In this paper, we introduce AutoAblation, a new framework for the design and parallel execution of ablation experiments. AutoAblation provides a declarative approach to defining ablation experiments on model architectures and training datasets, and enables the parallel execution of ablation trials. This reduces the execution time and allows more comprehensive experiments by exploiting larger amounts of computational resources. We show that AutoAblation can provide near-linear scalability by performing an ablation study on the modules of the Inception-v3 network trained on the TenGeoPSAR dataset.
AutoAblation
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信