Tianhua Xu, N. Shevchenko, B. Karanov, G. Liga, D. Lavery, R. Killey, P. Bayvel
{"title":"Digital nonlinearity compensation in high-capacity optical fibre communication systems: Performance and optimisation","authors":"Tianhua Xu, N. Shevchenko, B. Karanov, G. Liga, D. Lavery, R. Killey, P. Bayvel","doi":"10.1109/RTUWO.2017.8228507","DOIUrl":null,"url":null,"abstract":"Meeting the ever-growing information rate demands has become of utmost importance for optical communication systems. However, it has proven to be a challenging task due to the presence of Kerr effects, which have largely been regarded as a major bottleneck for enhancing the achievable information rates in modern optical communications. In this work, the optimisation and performance of digital nonlinearity compensation are discussed for maximising the achievable information rates in spectrally-efficient optical fibre communication systems. It is found that, for any given target information rate, there exists a trade-off between modulation format and compensated bandwidth to reduce the computational complexity requirement of digital nonlinearity compensation.","PeriodicalId":183694,"journal":{"name":"2017 Advances in Wireless and Optical Communications (RTUWO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Advances in Wireless and Optical Communications (RTUWO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUWO.2017.8228507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Meeting the ever-growing information rate demands has become of utmost importance for optical communication systems. However, it has proven to be a challenging task due to the presence of Kerr effects, which have largely been regarded as a major bottleneck for enhancing the achievable information rates in modern optical communications. In this work, the optimisation and performance of digital nonlinearity compensation are discussed for maximising the achievable information rates in spectrally-efficient optical fibre communication systems. It is found that, for any given target information rate, there exists a trade-off between modulation format and compensated bandwidth to reduce the computational complexity requirement of digital nonlinearity compensation.