Non-parametric regression for patch-based fluorescence microscopy image sequence denoising

J. Boulanger, J. Sibarita, C. Kervrann, P. Bouthemy
{"title":"Non-parametric regression for patch-based fluorescence microscopy image sequence denoising","authors":"J. Boulanger, J. Sibarita, C. Kervrann, P. Bouthemy","doi":"10.1109/ISBI.2008.4541104","DOIUrl":null,"url":null,"abstract":"We present a non-parametric regression method for denoising fluorescence video-microscopy volume sequences. The designed method aims at using the 3D+t information in order to restore acquired data contaminated by Poisson and Gaussian noise. We propose to use a variance stabilization transform to deal with the combination of Poisson and Gaussian noise. Consequently, we further propose an adaptive patch-based framework able to preserve space-time discontinuities and reduce significantly noise level using the 3D+t space-time context. This approach lead to an algorithm whose parameters are calibrated and then ready for intensive use. The performance of the proposed method are then demonstrated on both synthetic and real image sequences using quantitative as well as qualitative criteria.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a non-parametric regression method for denoising fluorescence video-microscopy volume sequences. The designed method aims at using the 3D+t information in order to restore acquired data contaminated by Poisson and Gaussian noise. We propose to use a variance stabilization transform to deal with the combination of Poisson and Gaussian noise. Consequently, we further propose an adaptive patch-based framework able to preserve space-time discontinuities and reduce significantly noise level using the 3D+t space-time context. This approach lead to an algorithm whose parameters are calibrated and then ready for intensive use. The performance of the proposed method are then demonstrated on both synthetic and real image sequences using quantitative as well as qualitative criteria.
基于斑块的荧光显微镜图像序列去噪的非参数回归
我们提出了一种非参数回归方法去噪荧光视频显微镜体积序列。所设计的方法旨在利用三维+t信息来恢复被泊松和高斯噪声污染的采集数据。我们提出使用方差稳定变换来处理泊松噪声和高斯噪声的组合。因此,我们进一步提出了一种基于补丁的自适应框架,该框架能够使用3D+t时空上下文来保持时空不连续并显着降低噪声水平。这种方法产生了一种算法,其参数经过校准,然后准备好大量使用。然后使用定量和定性标准在合成和真实图像序列上证明了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信