Upper bound on the capacity of a cascade of nonlinear and noisy channels

G. Kramer, Mansoor I. Yousefi, F. Kschischang
{"title":"Upper bound on the capacity of a cascade of nonlinear and noisy channels","authors":"G. Kramer, Mansoor I. Yousefi, F. Kschischang","doi":"10.1109/ITW.2015.7133167","DOIUrl":null,"url":null,"abstract":"An upper bound on the capacity of a cascade of nonlinear and noisy channels is presented. The cascade mimics the split-step Fourier method for computing waveform propagation governed by the stochastic generalized nonlinear Schrödinger equation. It is shown that the spectral efficiency of the cascade is at most log(1+SNR), where SNR is the receiver signal-to-noise ratio. The results may be applied to optical fiber channels. However, the definition of bandwidth is subtle and leaves open interpretations of the bound. Some of these interpretations are discussed.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

An upper bound on the capacity of a cascade of nonlinear and noisy channels is presented. The cascade mimics the split-step Fourier method for computing waveform propagation governed by the stochastic generalized nonlinear Schrödinger equation. It is shown that the spectral efficiency of the cascade is at most log(1+SNR), where SNR is the receiver signal-to-noise ratio. The results may be applied to optical fiber channels. However, the definition of bandwidth is subtle and leaves open interpretations of the bound. Some of these interpretations are discussed.
非线性和噪声信道级联容量的上界
给出了非线性噪声信道级联容量的上界。级联模拟了计算由随机广义非线性Schrödinger方程控制的波形传播的分步傅立叶方法。结果表明,级联的频谱效率不超过log(1+SNR),其中SNR为接收机信噪比。研究结果可应用于光纤通道。然而,带宽的定义是微妙的,留下了开放的边界解释。本文讨论了其中的一些解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信