An elementary and unified proof of Grothendieck’s inequality

S. Friedland, Lek-Heng Lim, Jinjie Zhang
{"title":"An elementary and unified proof of Grothendieck’s inequality","authors":"S. Friedland, Lek-Heng Lim, Jinjie Zhang","doi":"10.4171/LEM/64-3/4-6","DOIUrl":null,"url":null,"abstract":"We present an elementary, self-contained proof of Grothendieck's inequality that unifies both the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known bounds for the real and complex Grothendieck constants respectively.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/64-3/4-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present an elementary, self-contained proof of Grothendieck's inequality that unifies both the real and complex cases and yields both the Krivine and Haagerup bounds, the current best-known bounds for the real and complex Grothendieck constants respectively.
格罗腾狄克不等式的初等统一证明
我们给出了格罗腾迪克不等式的一个初等的、自包含的证明,它统一了实数和复数情况,并分别给出了目前最著名的实数和复数格罗腾迪克常数的Krivine界和Haagerup界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信