Active and Passive Machine Learning Predictors to Build Adaptive Virtual Environments

Timothy McMahan, Thomas Parsons
{"title":"Active and Passive Machine Learning Predictors to Build Adaptive Virtual Environments","authors":"Timothy McMahan, Thomas Parsons","doi":"10.54941/ahfe1003866","DOIUrl":null,"url":null,"abstract":"Virtual environments are increasingly used for assessment and training. While virtual environments offer ecologically valid stimulus presentations, they still follow a one-size fits all model. Technological innovation provides opportunities to transform the virtual environments into a customized experience for each individual user. This allows for the personalization of the virtual environment to the unique capabilities of a user. Active and passive data logging systems provide data necessary for adaptive virtual environments. Currently, most adaptive systems apply either active or passive data collection for building an adaptive virtual environment. The goal of the current research is to identify an optimal methodology for integrating both active and passive data into an adaptive virtual environment that can employ user data for fine tuning stimulus presentations. The framework suggested provides optimal performance parameters for identifying user cognitive and affective states and keeping users in a flow state. The result is a customized experience that is personalized to the user.","PeriodicalId":389727,"journal":{"name":"Human Factors in Virtual Environments and Game Design","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors in Virtual Environments and Game Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1003866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual environments are increasingly used for assessment and training. While virtual environments offer ecologically valid stimulus presentations, they still follow a one-size fits all model. Technological innovation provides opportunities to transform the virtual environments into a customized experience for each individual user. This allows for the personalization of the virtual environment to the unique capabilities of a user. Active and passive data logging systems provide data necessary for adaptive virtual environments. Currently, most adaptive systems apply either active or passive data collection for building an adaptive virtual environment. The goal of the current research is to identify an optimal methodology for integrating both active and passive data into an adaptive virtual environment that can employ user data for fine tuning stimulus presentations. The framework suggested provides optimal performance parameters for identifying user cognitive and affective states and keeping users in a flow state. The result is a customized experience that is personalized to the user.
主动和被动机器学习预测构建自适应虚拟环境
虚拟环境越来越多地用于评估和培训。虽然虚拟环境提供了生态上有效的刺激表现,但它们仍然遵循一刀切的模式。技术创新提供了将虚拟环境转化为每个用户定制体验的机会。这允许针对用户的独特功能对虚拟环境进行个性化。主动和被动数据记录系统为自适应虚拟环境提供必要的数据。目前,大多数自适应系统采用主动或被动数据收集来构建自适应虚拟环境。当前研究的目标是确定一种将主动和被动数据集成到自适应虚拟环境中的最佳方法,该环境可以使用用户数据来微调刺激呈现。所提出的框架为识别用户的认知和情感状态,保持用户的心流状态提供了最佳的性能参数。其结果是为用户提供个性化的定制体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信