Dynamic Mixture Ratio Model

Marko Ruman, M. Kárný
{"title":"Dynamic Mixture Ratio Model","authors":"Marko Ruman, M. Kárný","doi":"10.1109/ICCAIRO47923.2019.00023","DOIUrl":null,"url":null,"abstract":"Finite mixtures of probability densities with components from exponential family serve as flexible parametric models of high-dimensional systems. However, with a few specialized exceptions, these dynamic models assume data-independent weights of mixture components. Their use is illogical and restricts the modeling applicability. The requirement for closeness with respect to conditioning, the basic learning operation, leads to a novel class of models: the mixture ratios. The paper justified them and shows their ability to model truly dynamic systems.","PeriodicalId":297342,"journal":{"name":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIRO47923.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Finite mixtures of probability densities with components from exponential family serve as flexible parametric models of high-dimensional systems. However, with a few specialized exceptions, these dynamic models assume data-independent weights of mixture components. Their use is illogical and restricts the modeling applicability. The requirement for closeness with respect to conditioning, the basic learning operation, leads to a novel class of models: the mixture ratios. The paper justified them and shows their ability to model truly dynamic systems.
动态混合比模型
概率密度与指数族分量的有限混合可以作为高维系统的柔性参数模型。然而,除了一些特殊的例外,这些动态模型假定混合组件的权重与数据无关。它们的使用是不合逻辑的,并且限制了建模的适用性。对条件反射(基本的学习操作)的密切性的要求导致了一类新的模型:混合比率。本文证明了它们的合理性,并展示了它们模拟真正动态系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信