2-D weighted impulse response Gramians and model reduction of 2-D separable denominator digital systems

Chengshan Xiao
{"title":"2-D weighted impulse response Gramians and model reduction of 2-D separable denominator digital systems","authors":"Chengshan Xiao","doi":"10.1109/SECON.1995.513115","DOIUrl":null,"url":null,"abstract":"The weighted impulse response Gramians of two-dimensional (2-D) separable denominator digital systems are defined based on the definition proposed by Sreeram and Agathoklis (1991, 1993) for the 1-D case. These Gramians are then applied to present a model reduction method for such 2-D systems. The reduced-order system is always stable if the original 2-D system is stable. A numerical example is illustrated and compared with well known 2-D model reduction method.","PeriodicalId":334874,"journal":{"name":"Proceedings IEEE Southeastcon '95. Visualize the Future","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '95. Visualize the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1995.513115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The weighted impulse response Gramians of two-dimensional (2-D) separable denominator digital systems are defined based on the definition proposed by Sreeram and Agathoklis (1991, 1993) for the 1-D case. These Gramians are then applied to present a model reduction method for such 2-D systems. The reduced-order system is always stable if the original 2-D system is stable. A numerical example is illustrated and compared with well known 2-D model reduction method.
二维可分分母数字系统的二维加权脉冲响应谱和模型约简
基于Sreeram和Agathoklis(1991,1993)对一维情况提出的定义,定义了二维(2-D)可分分母数字系统的加权脉冲响应gramian。然后应用这些gramian来给出这种二维系统的模型约简方法。如果原二维系统是稳定的,则降阶系统总是稳定的。给出了一个数值算例,并与常用的二维模型约简方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信