Generalizing Action Justification and Causal Links to Policies

S. Sreedharan, Christian Muise, Subbarao Kambhampati
{"title":"Generalizing Action Justification and Causal Links to Policies","authors":"S. Sreedharan, Christian Muise, Subbarao Kambhampati","doi":"10.1609/icaps.v33i1.27221","DOIUrl":null,"url":null,"abstract":"We revisit two concepts popularly used within the context of classical planning, namely action justification and causal links. While these concepts have come to underpin some of the most popular notions of explanations in classical planning, these notions are restricted to sequential plans. To address this shortcoming, we propose a generalization of these concepts that is applicable to state-action policies. We introduce algorithms that can identify justified actions and causal links contributed by such actions for policies generated for Fully Observable Non-Deterministic (FOND) planning problems. We also present an empirical evaluation that demonstrates the computational characteristics of these algorithms on standard FOND benchmarks.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit two concepts popularly used within the context of classical planning, namely action justification and causal links. While these concepts have come to underpin some of the most popular notions of explanations in classical planning, these notions are restricted to sequential plans. To address this shortcoming, we propose a generalization of these concepts that is applicable to state-action policies. We introduce algorithms that can identify justified actions and causal links contributed by such actions for policies generated for Fully Observable Non-Deterministic (FOND) planning problems. We also present an empirical evaluation that demonstrates the computational characteristics of these algorithms on standard FOND benchmarks.
概括行动的理由和政策的因果关系
我们重新审视经典规划中常用的两个概念,即行动正当性和因果关系。虽然这些概念已经成为经典规划中一些最流行的解释概念的基础,但这些概念仅限于顺序计划。为了解决这一缺点,我们提出了适用于国家行动政策的这些概念的概括。我们引入了一种算法,该算法可以识别为完全可观察非确定性(FOND)规划问题生成的策略所产生的合理行为和因果关系。我们还提出了一个实证评估,证明了这些算法在标准FOND基准上的计算特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信