Zhi Hao, Yadong He, Jun Chen, Shaowen Luo, Xuwen Zhou, Baopeng Lu
{"title":"Simulation Analysis of Thermal Runaway Characteristics of Lithium-Ion Batteries","authors":"Zhi Hao, Yadong He, Jun Chen, Shaowen Luo, Xuwen Zhou, Baopeng Lu","doi":"10.1109/ICPST56889.2023.10165565","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries have become the first choice for electric vehicle power batteries and energy storage power plants due to their good output characteristics and high energy density. Taking the lithium battery as the research object, a battery monomer heat production model is established to explore the heat generation mechanism of the lithium-ion battery, and the simulation results show that the internal temperature field of lithium-ion battery is unevenly distributed, and the middle temperature is higher than the surrounding temperature. The experimental analysis of the thermal runaway characteristics of the lithium-ion battery under the pinning conditions shows that the temperature change trend of the battery is the same at each point during the pinning period, but the temperature at the pinning point is the highest. With the increase of the battery SOC, the maximum temperature at each temperature point increases, but the growth rate of the maximum temperature becomes gradually slower.","PeriodicalId":231392,"journal":{"name":"2023 IEEE International Conference on Power Science and Technology (ICPST)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Power Science and Technology (ICPST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST56889.2023.10165565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries have become the first choice for electric vehicle power batteries and energy storage power plants due to their good output characteristics and high energy density. Taking the lithium battery as the research object, a battery monomer heat production model is established to explore the heat generation mechanism of the lithium-ion battery, and the simulation results show that the internal temperature field of lithium-ion battery is unevenly distributed, and the middle temperature is higher than the surrounding temperature. The experimental analysis of the thermal runaway characteristics of the lithium-ion battery under the pinning conditions shows that the temperature change trend of the battery is the same at each point during the pinning period, but the temperature at the pinning point is the highest. With the increase of the battery SOC, the maximum temperature at each temperature point increases, but the growth rate of the maximum temperature becomes gradually slower.