Seeing physics, or: physics is for prediction [computer vision]

M. Brand, P. Cooper, L. Birnbaum
{"title":"Seeing physics, or: physics is for prediction [computer vision]","authors":"M. Brand, P. Cooper, L. Birnbaum","doi":"10.1109/PBMCV.1995.514679","DOIUrl":null,"url":null,"abstract":"We describe how knowledge of the physics of the scene itself is\nimportant to computer vision. High-level knowledge of scene physics can\nhelp programs see the world, and programs that see and understand this\nway are useful for planning plan scene interactions. We illustrate these\npoints with two of our most recent knowledge-intensive vision systems.\nOne uses knowledge of physics and function to understand noisy and\nambiguous images of gear-train machines; i.e. to report what the machine\ndoes. The other uses physical knowledge to guide a robotic eye-hand\nsystem to pick up a mug of coffee by its handle","PeriodicalId":343932,"journal":{"name":"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PBMCV.1995.514679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe how knowledge of the physics of the scene itself is important to computer vision. High-level knowledge of scene physics can help programs see the world, and programs that see and understand this way are useful for planning plan scene interactions. We illustrate these points with two of our most recent knowledge-intensive vision systems. One uses knowledge of physics and function to understand noisy and ambiguous images of gear-train machines; i.e. to report what the machine does. The other uses physical knowledge to guide a robotic eye-hand system to pick up a mug of coffee by its handle
看到物理,或:物理是为了预测[计算机视觉]
我们描述了场景本身的物理知识对计算机视觉的重要性。场景物理的高级知识可以帮助程序看到世界,并且以这种方式看到和理解的程序对于规划计划场景交互非常有用。我们用两个最新的知识密集型视觉系统来说明这些观点。一种是利用物理和函数知识来理解齿轮传动机械的噪声和模糊图像;即报告机器的工作。另一种方法是利用物理知识来引导机器人的眼手系统拿起咖啡杯的把手
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信