Comparison of Tuplet of Techniques for Facial Emotion Detection

Dasharath.K. Bhadangkar, J. Pujari, Rajesh Yakkundimath
{"title":"Comparison of Tuplet of Techniques for Facial Emotion Detection","authors":"Dasharath.K. Bhadangkar, J. Pujari, Rajesh Yakkundimath","doi":"10.1109/I-SMAC49090.2020.9243439","DOIUrl":null,"url":null,"abstract":"Intelligent systems use real-time emotion recognition for interacting with humans in a better way to dynamically adapt their responses based on user emotions. Emotion detection is a combination of facial expression, gestures and speech features. With proper emotion detection using facial features, the mental health of subjects could be monitored and improved, thus preventing unruly actions. Machine learning techniques applied for feature extraction and classification would perform emotion detection based only on facial expression. In this work accuracy of up to 0.9042 was achieved using a combination of Latent Dirichlet Allocation (LDA) + Support Vector Machines (SVM).","PeriodicalId":432766,"journal":{"name":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC49090.2020.9243439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Intelligent systems use real-time emotion recognition for interacting with humans in a better way to dynamically adapt their responses based on user emotions. Emotion detection is a combination of facial expression, gestures and speech features. With proper emotion detection using facial features, the mental health of subjects could be monitored and improved, thus preventing unruly actions. Machine learning techniques applied for feature extraction and classification would perform emotion detection based only on facial expression. In this work accuracy of up to 0.9042 was achieved using a combination of Latent Dirichlet Allocation (LDA) + Support Vector Machines (SVM).
几种面部情绪检测技术的比较
智能系统使用实时情感识别与人类互动,以更好的方式根据用户的情绪动态调整他们的反应。情感检测是面部表情、手势和语言特征的结合。通过面部特征进行适当的情绪检测,可以监测和改善被试的心理健康状况,从而防止不守规矩的行为。用于特征提取和分类的机器学习技术将仅基于面部表情进行情感检测。在这项工作中,使用潜在狄利克雷分配(LDA) +支持向量机(SVM)的组合实现了高达0.9042的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信