Towards More Accurate Radio Telescope Images

Nezihe Merve Gurel, P. Hurley, Matthieu Simeoni
{"title":"Towards More Accurate Radio Telescope Images","authors":"Nezihe Merve Gurel, P. Hurley, Matthieu Simeoni","doi":"10.1109/CVPRW.2018.00254","DOIUrl":null,"url":null,"abstract":"Radio interferometry usually compensates for high levels of noise in sensor/antenna electronics by throwing data and energy at the problem: observe longer, then store and process it all. We propose instead a method to remove the noise explicitly before imaging. To this end, we developed an algorithm that first decomposes the instances of antenna correlation matrix, the so-called visibility matrix, into additive components using Singular Spectrum Analysis and then cluster these components using graph Laplacian matrix. We show through simulation the potential for radio astronomy, in particular, illustrating the benefit for LOFAR, the low frequency array in Netherlands. Least-squares images are estimated with far higher accuracy with low computation cost without the need for long observation time.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radio interferometry usually compensates for high levels of noise in sensor/antenna electronics by throwing data and energy at the problem: observe longer, then store and process it all. We propose instead a method to remove the noise explicitly before imaging. To this end, we developed an algorithm that first decomposes the instances of antenna correlation matrix, the so-called visibility matrix, into additive components using Singular Spectrum Analysis and then cluster these components using graph Laplacian matrix. We show through simulation the potential for radio astronomy, in particular, illustrating the benefit for LOFAR, the low frequency array in Netherlands. Least-squares images are estimated with far higher accuracy with low computation cost without the need for long observation time.
更精确的射电望远镜图像
无线电干涉测量通常通过向问题投入数据和能量来补偿传感器/天线电子设备中的高水平噪声:观察更长时间,然后存储和处理所有这些数据。我们提出了一种在成像前明确去除噪声的方法。为此,我们开发了一种算法,该算法首先使用奇异频谱分析将天线相关矩阵(即所谓的可见性矩阵)的实例分解为可加成分,然后使用图拉普拉斯矩阵对这些成分进行聚类。我们通过模拟展示了射电天文学的潜力,特别是说明了荷兰低频阵列LOFAR的好处。在不需要长时间观测的情况下,以较低的计算成本对最小二乘图像进行估计,具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信