Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar
{"title":"Global path planning for mobile robots in large-scale grid environments using genetic algorithms","authors":"Maram Alajlan, A. Koubâa, I. Châari, Hachemi Bennaceur, Adel Ammar","doi":"10.1109/ICBR.2013.6729271","DOIUrl":null,"url":null,"abstract":"Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.","PeriodicalId":269516,"journal":{"name":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBR.2013.6729271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
Global path planning is considered as a fundamental problem for mobile robots. In this paper, we investigate the capabilities of genetic algorithms (GA) for solving the global path planning problem in large-scale grid maps. First, we propose a GA approach for efficiently finding an (or near) optimal path in the grid map. We carefully designed GA operators to optimize the search process. We also conduct a comprehensive statistical evaluation of the proposed GA approach in terms of solution quality, and we compare it against the well-known A* algorithm as a reference. Extensive simulation results show that GA is able to find the optimal paths in large environments equally to A* in almost all the simulated cases.