Learning From Evolving Network Data for Dependable Botnet Detection

Duc C. Le, A. N. Zincir-Heywood
{"title":"Learning From Evolving Network Data for Dependable Botnet Detection","authors":"Duc C. Le, A. N. Zincir-Heywood","doi":"10.23919/CNSM46954.2019.9012710","DOIUrl":null,"url":null,"abstract":"This work presents an emerging problem in real-world applications of machine learning (ML) in cybersecurity, particularly in botnet detection, where the dynamics and the evolution in the deployment environments may render the ML solutions inadequate. We propose an approach to tackle this challenge using Genetic Programming (GP) - an evolutionary computation based approach. Preliminary results show that GP is able to evolve pre-trained classifiers to work under evolved (expanded) feature space conditions. This indicates the potential use of such an approach for botnet detection under non-stationary environments, where much less data and training time are required to obtain a reliable classifier as new network conditions arise.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents an emerging problem in real-world applications of machine learning (ML) in cybersecurity, particularly in botnet detection, where the dynamics and the evolution in the deployment environments may render the ML solutions inadequate. We propose an approach to tackle this challenge using Genetic Programming (GP) - an evolutionary computation based approach. Preliminary results show that GP is able to evolve pre-trained classifiers to work under evolved (expanded) feature space conditions. This indicates the potential use of such an approach for botnet detection under non-stationary environments, where much less data and training time are required to obtain a reliable classifier as new network conditions arise.
从不断发展的网络数据中学习可靠的僵尸网络检测
这项工作提出了机器学习(ML)在网络安全中的实际应用中的一个新问题,特别是在僵尸网络检测中,其中部署环境的动态和演变可能会使ML解决方案不足。我们提出了一种利用遗传规划(GP)——一种基于进化计算的方法来解决这一挑战的方法。初步结果表明,GP能够进化出在演化(扩展)特征空间条件下工作的预训练分类器。这表明这种方法在非平稳环境下用于僵尸网络检测的潜在用途,在这种环境中,随着新网络条件的出现,获得可靠分类器所需的数据和训练时间要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信