A hybrid GA-PSO approach for reliability under type II censored data using exponential distribution

K. Kalaivani, S. Somsundaram
{"title":"A hybrid GA-PSO approach for reliability under type II censored data using exponential distribution","authors":"K. Kalaivani, S. Somsundaram","doi":"10.12988/IJMA.2014.49286","DOIUrl":null,"url":null,"abstract":"Today software plays an important role and its application is used in each and every domain. In software testing phase, quality risk, reliability and fault detection are used to analysis and remove the failure of the item. Owing to time constraints and limited number of testing unit, we cannot fix the experiment until the failure. In order to observe the failure during testing phase, censoring becomes significant methodology to estimate model parameters of exponential distributions. The most common censoring schemes do not have the flexibility to identify the failure in the terminal point. The most commonly used censoring schemes are Type I and Type II censoring schemes. To identify the optimum censoring scheme and overcome these problems optimal technique is used in this paper. Thus, optimal scheme will improve the output of testing phase with the aid of specific optimal constraints. Entropy and variance are used as optimal criterion. Determination of Optimal schemes will be done by Hybrid Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The risk values are estimated of the selected optimal censoring scheme. 2482 K. Kalaivani and S. Somsundaram","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/IJMA.2014.49286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Today software plays an important role and its application is used in each and every domain. In software testing phase, quality risk, reliability and fault detection are used to analysis and remove the failure of the item. Owing to time constraints and limited number of testing unit, we cannot fix the experiment until the failure. In order to observe the failure during testing phase, censoring becomes significant methodology to estimate model parameters of exponential distributions. The most common censoring schemes do not have the flexibility to identify the failure in the terminal point. The most commonly used censoring schemes are Type I and Type II censoring schemes. To identify the optimum censoring scheme and overcome these problems optimal technique is used in this paper. Thus, optimal scheme will improve the output of testing phase with the aid of specific optimal constraints. Entropy and variance are used as optimal criterion. Determination of Optimal schemes will be done by Hybrid Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The risk values are estimated of the selected optimal censoring scheme. 2482 K. Kalaivani and S. Somsundaram
一种基于指数分布的混合GA-PSO方法求解II型截除数据下的可靠性
今天,软件扮演着重要的角色,它的应用被用于各个领域。在软件测试阶段,通过质量风险、可靠性和故障检测来分析和消除项目的故障。由于时间的限制和测试单元的数量有限,我们无法修复实验,直到失败。为了观察测试阶段的失效情况,滤波成为估计指数分布模型参数的重要方法。最常见的审查方案没有灵活性,以确定在终端故障。最常用的过滤方案是I型和II型过滤方案。为了确定最优的过滤方案并克服这些问题,本文采用了最优技术。因此,最优方案将借助特定的最优约束来提高测试阶段的输出。采用熵和方差作为最优准则。采用混合遗传算法(GA)和粒子群算法(PSO)确定最优方案。对所选最优方案的风险值进行了估计。2482 K。Kalaivani和S. Somsundaram
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信