Forecasting Stock Returns with Model Uncertainty and Parameter Instability

Hongwei Zhang, Q. He, B. Jacobsen, Fuwei Jiang
{"title":"Forecasting Stock Returns with Model Uncertainty and Parameter Instability","authors":"Hongwei Zhang, Q. He, B. Jacobsen, Fuwei Jiang","doi":"10.2139/ssrn.3039844","DOIUrl":null,"url":null,"abstract":"We compare several representative sophisticated model averaging and variable selection techniques of forecasting stock returns. When estimated traditionally, our results confirm that the simple combination of individual predictors is superior. However, sophisticated models improve dramatically once we combine them with the historical average and take parameter instability into account. An equal weighted combination of the historical average with the standard multivariate predictive regression estimated using the average windows method, for example, achieves a statistically significant monthly out‐of‐sample ROS2 of 1.10% and annual utility gains of 2.34%. We obtain similar gains for predicting future macroeconomic conditions.","PeriodicalId":101497,"journal":{"name":"Asian Finance Association (AsianFA) 2018 Conference (Archive)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Finance Association (AsianFA) 2018 Conference (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3039844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We compare several representative sophisticated model averaging and variable selection techniques of forecasting stock returns. When estimated traditionally, our results confirm that the simple combination of individual predictors is superior. However, sophisticated models improve dramatically once we combine them with the historical average and take parameter instability into account. An equal weighted combination of the historical average with the standard multivariate predictive regression estimated using the average windows method, for example, achieves a statistically significant monthly out‐of‐sample ROS2 of 1.10% and annual utility gains of 2.34%. We obtain similar gains for predicting future macroeconomic conditions.
具有模型不确定性和参数不稳定性的股票收益预测
我们比较了几种具有代表性的复杂模型平均和变量选择预测股票收益的技术。当传统估计时,我们的结果证实单个预测因子的简单组合是优越的。然而,一旦我们将复杂的模型与历史平均值结合起来并考虑参数不稳定性,模型就会得到显著改善。例如,使用平均窗口法估计的历史平均值与标准多变量预测回归的等加权组合,实现了统计上显著的月度样本外ROS2为1.10%,年度效用收益为2.34%。我们在预测未来宏观经济状况方面也获得了类似的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信