Segmentation of Optic Cup and Disc for Diagnosis of Glaucoma on Retinal Fundus Images

A. O. Joshua, F. Nelwamondo, G. Mabuza-Hocquet
{"title":"Segmentation of Optic Cup and Disc for Diagnosis of Glaucoma on Retinal Fundus Images","authors":"A. O. Joshua, F. Nelwamondo, G. Mabuza-Hocquet","doi":"10.1109/ROBOMECH.2019.8704727","DOIUrl":null,"url":null,"abstract":"Glaucoma has been attributed to be the leading cause of blindness in the world second only to diabetic retinopathy. About 66.8 million people in the world have glaucoma and about 6.7 million are suffering from blindness as a result of glaucoma. A cause of glaucoma is the enlargement of the optic cup such that it occupies the optic disc area. Hence, the estimation of optic Cup to Disc ratio (CDR) is a valuable tool in diagnosing glaucoma. The CDR can be obtained by segmenting the optic cup and optic disc from the fundus image. In this work, an improved U-net Convolutional Neural Network (CNN) architecture was used to segment the optic disc and the optic cup from the fundus image. The dataset used was obtained from the DRISHTI-GS database and the RIM-ONE v.3. The proposed pipeline and architecture outperforms existing techniques on Optic Disc (OD) and Optic Cup (OC) segmentation on the Dice-score metric and prediction time.","PeriodicalId":344332,"journal":{"name":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOMECH.2019.8704727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Glaucoma has been attributed to be the leading cause of blindness in the world second only to diabetic retinopathy. About 66.8 million people in the world have glaucoma and about 6.7 million are suffering from blindness as a result of glaucoma. A cause of glaucoma is the enlargement of the optic cup such that it occupies the optic disc area. Hence, the estimation of optic Cup to Disc ratio (CDR) is a valuable tool in diagnosing glaucoma. The CDR can be obtained by segmenting the optic cup and optic disc from the fundus image. In this work, an improved U-net Convolutional Neural Network (CNN) architecture was used to segment the optic disc and the optic cup from the fundus image. The dataset used was obtained from the DRISHTI-GS database and the RIM-ONE v.3. The proposed pipeline and architecture outperforms existing techniques on Optic Disc (OD) and Optic Cup (OC) segmentation on the Dice-score metric and prediction time.
视杯盘分割在青光眼诊断中的应用
青光眼被认为是世界上仅次于糖尿病视网膜病变的主要致盲原因。全世界约有6680万人患有青光眼,约670万人因青光眼而失明。青光眼的一个原因是视杯扩大,以致它占据视盘区域。因此,估计视杯盘比(CDR)是诊断青光眼的一个有价值的工具。通过从眼底图像中分割视杯和视盘得到CDR。在这项工作中,使用改进的U-net卷积神经网络(CNN)架构从眼底图像中分割视盘和视杯。使用的数据集来自DRISHTI-GS数据库和RIM-ONE v.3。所提出的管道和架构在Dice-score指标和预测时间上优于现有的Optic Disc (OD)和Optic Cup (OC)分割技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信