A fast learning algorithm for principal component extraction with data dependent learning rate

Lijun Liu, Rendong Ge, Jun Tie
{"title":"A fast learning algorithm for principal component extraction with data dependent learning rate","authors":"Lijun Liu, Rendong Ge, Jun Tie","doi":"10.1109/IWACI.2010.5585143","DOIUrl":null,"url":null,"abstract":"We propose a fast adaptive learning algorithm for computing principal eigenvector of covariance matrix arisen in the field of signal processing, where the learning process has to be repeated in online manner. Compared with most existing neural algorithms, the proposed approach effectively makes use of the online estimation of eigenvalue to update the principal eigenvector, which makes the method works with an adaptive data dependent learning rate and thus demonstrates a fast convergence speed. Numerical experiment further shows that this data dependent learning rate in the proposed algorithm offers significant advantages over that of constant learning algorithm.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a fast adaptive learning algorithm for computing principal eigenvector of covariance matrix arisen in the field of signal processing, where the learning process has to be repeated in online manner. Compared with most existing neural algorithms, the proposed approach effectively makes use of the online estimation of eigenvalue to update the principal eigenvector, which makes the method works with an adaptive data dependent learning rate and thus demonstrates a fast convergence speed. Numerical experiment further shows that this data dependent learning rate in the proposed algorithm offers significant advantages over that of constant learning algorithm.
基于数据依赖学习率的主成分提取快速学习算法
针对信号处理领域中需要在线重复学习的协方差矩阵主特征向量的计算问题,提出了一种快速自适应学习算法。与大多数现有的神经算法相比,该方法有效地利用特征值的在线估计来更新主特征向量,使得该方法具有自适应的数据依赖学习率,从而具有较快的收敛速度。数值实验进一步表明,该算法的数据依赖学习率明显优于恒定学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信