Multi-Channel Automatic Speech Recognition Using Deep Complex Unet

Yuxiang Kong, Jian Wu, Quandong Wang, Peng Gao, Weiji Zhuang, Yujun Wang, Lei Xie
{"title":"Multi-Channel Automatic Speech Recognition Using Deep Complex Unet","authors":"Yuxiang Kong, Jian Wu, Quandong Wang, Peng Gao, Weiji Zhuang, Yujun Wang, Lei Xie","doi":"10.1109/SLT48900.2021.9383492","DOIUrl":null,"url":null,"abstract":"The front-end module in multi-channel automatic speech recognition (ASR) systems mainly use microphone array techniques to produce enhanced signals in noisy conditions with reverberation and echos. Recently, neural network (NN) based front-end has shown promising improvement over the conventional signal processing methods. In this paper, we propose to adopt the architecture of deep complex Unet (DCUnet) - a powerful complex-valued Unet-structured speech enhancement model - as the front-end of the multi-channel acoustic model, and integrate them in a multi-task learning (MTL) framework along with cascaded framework for comparison. Meanwhile, we investigate the proposed methods with several training strategies to improve the recognition accuracy on the 1000-hours real-world XiaoMi smart speaker data with echos. Experiments show that our proposed DCUnet-MTL method brings about 12.2% relative character error rate (CER) reduction compared with the traditional approach with array processing plus single-channel acoustic model. It also achieves superior performance than the recently proposed neural beamforming method.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The front-end module in multi-channel automatic speech recognition (ASR) systems mainly use microphone array techniques to produce enhanced signals in noisy conditions with reverberation and echos. Recently, neural network (NN) based front-end has shown promising improvement over the conventional signal processing methods. In this paper, we propose to adopt the architecture of deep complex Unet (DCUnet) - a powerful complex-valued Unet-structured speech enhancement model - as the front-end of the multi-channel acoustic model, and integrate them in a multi-task learning (MTL) framework along with cascaded framework for comparison. Meanwhile, we investigate the proposed methods with several training strategies to improve the recognition accuracy on the 1000-hours real-world XiaoMi smart speaker data with echos. Experiments show that our proposed DCUnet-MTL method brings about 12.2% relative character error rate (CER) reduction compared with the traditional approach with array processing plus single-channel acoustic model. It also achieves superior performance than the recently proposed neural beamforming method.
基于深度复杂网络的多通道自动语音识别
多通道自动语音识别(ASR)系统的前端模块主要利用麦克风阵列技术在混响和回声等噪声条件下产生增强信号。近年来,基于神经网络的前端信号处理方法比传统的信号处理方法有了很大的进步。在本文中,我们建议采用深度复杂Unet (DCUnet)架构作为多通道声学模型的前端,并将它们集成到一个多任务学习(MTL)框架中,并与级联框架进行比较。同时,我们用几种训练策略对所提出的方法进行了研究,以提高具有回声的1000小时真实小米智能音箱数据的识别精度。实验表明,与传统的阵列处理加单通道声学模型的方法相比,我们提出的DCUnet-MTL方法的相对字符错误率(CER)降低了12.2%。与近年来提出的神经波束形成方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信