Global Information Attention Based Dual-Pathway Network for Oxidized Slag Segmentation of Metal Ingot Images

Degang Xu, Ao Zhang, Xuming Liu, Jie Wu
{"title":"Global Information Attention Based Dual-Pathway Network for Oxidized Slag Segmentation of Metal Ingot Images","authors":"Degang Xu, Ao Zhang, Xuming Liu, Jie Wu","doi":"10.1109/ICCAR57134.2023.10151743","DOIUrl":null,"url":null,"abstract":"The content of oxidized slag on the surface of metal ingot is the key to judge whether the metal ingot is qualified. However, it is still a challenge to determine the covering area of oxidized slag on the surface of metal ingot. In this paper, we proposed a novel Global Information Attention based dual-pathway Network (GANet) consists of context and edge pathways to segment oxidized slag on the metal ingot surface image. Specifically, to suppress the interference of background on oxidized slag segmentation, we propose novel Fusion Attention Module (FAM) and Global Position Attention Module (GPA), which can effectively aggregate global semantic information and improve segmentation performance. Meanwhile, we designed the edge pathway and Edge Perception Module (EPM) to extract the boundary information of the oxidized slag. The experimental results show that the performance of the GANet is better than the existing segmentation methods which proves the effectiveness of the proposed method and provides a research idea for the automation of metal casting process.","PeriodicalId":347150,"journal":{"name":"2023 9th International Conference on Control, Automation and Robotics (ICCAR)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR57134.2023.10151743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The content of oxidized slag on the surface of metal ingot is the key to judge whether the metal ingot is qualified. However, it is still a challenge to determine the covering area of oxidized slag on the surface of metal ingot. In this paper, we proposed a novel Global Information Attention based dual-pathway Network (GANet) consists of context and edge pathways to segment oxidized slag on the metal ingot surface image. Specifically, to suppress the interference of background on oxidized slag segmentation, we propose novel Fusion Attention Module (FAM) and Global Position Attention Module (GPA), which can effectively aggregate global semantic information and improve segmentation performance. Meanwhile, we designed the edge pathway and Edge Perception Module (EPM) to extract the boundary information of the oxidized slag. The experimental results show that the performance of the GANet is better than the existing segmentation methods which proves the effectiveness of the proposed method and provides a research idea for the automation of metal casting process.
基于全局信息关注的双路径网络在钢锭氧化渣图像分割中的应用
金属锭表面氧化渣的含量是判断金属锭是否合格的关键。然而,如何确定氧化渣在钢锭表面的覆盖面积仍然是一个难题。本文提出了一种基于上下文路径和边缘路径的基于全局信息关注的双路径网络(GANet)来分割钢锭表面图像上的氧化渣。具体来说,为了抑制背景对氧化渣分割的干扰,我们提出了新的融合注意模块(FAM)和全局位置注意模块(GPA),可以有效地聚合全局语义信息,提高分割性能。同时,我们设计了边缘路径和边缘感知模块(EPM)来提取氧化渣的边界信息。实验结果表明,GANet的分割性能优于现有的分割方法,证明了该方法的有效性,为金属铸造过程的自动化提供了研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信