Global localization in 3D maps for structured environment

Yanxin Ma, Yulan Guo, Min Lu, Jian Zhao, Jun Zhang
{"title":"Global localization in 3D maps for structured environment","authors":"Yanxin Ma, Yulan Guo, Min Lu, Jian Zhao, Jun Zhang","doi":"10.1109/IGARSS.2016.7730744","DOIUrl":null,"url":null,"abstract":"This paper presents a global localization method for mobile robots based on the geometric information of structured indoor environments. With a global/local point cloud and projection map, lines are extracted from the projection maps using Hough transform. According to the directions of the obtained lines, the orientations of projection maps and point clouds are normalized. Next, the template matching algorithm is applied to the normalized global and local projection maps. Once coarse localization is completed, final accurate localization is achieved using the Iterative Closest Points (ICP) algorithm. Experimental results on several point clouds show that the proposed method can achieve high localization accuracy in real-time. The proposed method can be used for other global localization applications in structured environments.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a global localization method for mobile robots based on the geometric information of structured indoor environments. With a global/local point cloud and projection map, lines are extracted from the projection maps using Hough transform. According to the directions of the obtained lines, the orientations of projection maps and point clouds are normalized. Next, the template matching algorithm is applied to the normalized global and local projection maps. Once coarse localization is completed, final accurate localization is achieved using the Iterative Closest Points (ICP) algorithm. Experimental results on several point clouds show that the proposed method can achieve high localization accuracy in real-time. The proposed method can be used for other global localization applications in structured environments.
结构化环境下三维地图的全局定位
提出了一种基于结构化室内环境几何信息的移动机器人全局定位方法。利用全局/局部点云和投影图,利用霍夫变换从投影图中提取直线。根据得到的线的方向,对投影图和点云的方向进行归一化。然后,将模板匹配算法应用于归一化的全局投影图和局部投影图。粗定位完成后,使用迭代最近点(ICP)算法实现最终的精确定位。在多个点云上的实验结果表明,该方法可以实现较高的实时定位精度。该方法可用于结构化环境下的其他全局定位应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信