THE TRUNCATED XLINDLEY DISTRIBUTION WITH CLASSIC AND 6BAYESIAN INFERENCE UNDER CENSORED DATA

N. Khodja, H. Aiachi, H. Talhi, I.N. Benatallah
{"title":"THE TRUNCATED XLINDLEY DISTRIBUTION WITH CLASSIC AND 6BAYESIAN INFERENCE UNDER CENSORED DATA","authors":"N. Khodja, H. Aiachi, H. Talhi, I.N. Benatallah","doi":"10.37418/amsj.11.12.4","DOIUrl":null,"url":null,"abstract":"We provide a brand-new distribution based on the model of Lindley, with an emphasis on the estimation of its unknown parameters. After introducing the new distribution, we cover two approaches to estimate its parameters; in the presence of a censored scheme, we first use a traditional approach, which is The maximum likelihood technique, then we use the Bayesian approach. The BarzilaiBrown algorithm is used to derive the censored maximum likelihood estimators while a Monte Carlo Markov chains (MCMC) procedure is applied to derive the Bayesian ones. Three loss functions are used to provide the Bayesian estimators: the entropy, the generalized quadratic, and the Linex functions. Using Pitman's proximity criteria; the maximum likelihood and the Bayesian estimations are compared. All of the provided estimations techniques have been evaluated throughout simulation studies. Finally, we consider two sample Bayes predictions to predict future order statistics","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.11.12.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We provide a brand-new distribution based on the model of Lindley, with an emphasis on the estimation of its unknown parameters. After introducing the new distribution, we cover two approaches to estimate its parameters; in the presence of a censored scheme, we first use a traditional approach, which is The maximum likelihood technique, then we use the Bayesian approach. The BarzilaiBrown algorithm is used to derive the censored maximum likelihood estimators while a Monte Carlo Markov chains (MCMC) procedure is applied to derive the Bayesian ones. Three loss functions are used to provide the Bayesian estimators: the entropy, the generalized quadratic, and the Linex functions. Using Pitman's proximity criteria; the maximum likelihood and the Bayesian estimations are compared. All of the provided estimations techniques have been evaluated throughout simulation studies. Finally, we consider two sample Bayes predictions to predict future order statistics
截断xlindley分布与经典贝叶斯和6贝叶斯推理
我们提出了一个基于Lindley模型的全新分布,重点是对其未知参数的估计。在介绍了新的分布之后,我们介绍了两种估计其参数的方法;在存在审查方案的情况下,我们首先使用传统的方法,即最大似然技术,然后使用贝叶斯方法。采用BarzilaiBrown算法推导截尾极大似然估计,采用蒙特卡洛马尔可夫链(MCMC)方法推导贝叶斯极大似然估计。使用三种损失函数来提供贝叶斯估计量:熵、广义二次函数和Linex函数。采用皮特曼接近准则;比较了极大似然估计和贝叶斯估计。所有提供的估计技术都在整个模拟研究中进行了评估。最后,我们考虑两个样本贝叶斯预测来预测未来的订单统计量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信