Adaptive speech model for missing-feature reconstruction

H. O. Viana, A. Araujo
{"title":"Adaptive speech model for missing-feature reconstruction","authors":"H. O. Viana, A. Araujo","doi":"10.1109/ICDSP.2016.7868525","DOIUrl":null,"url":null,"abstract":"This paper presents a new adaptive speech model for Missing-Feature Reconstruction using unsupervised learning for speech recognition. Hence, a neural network with time-varying structure, LARFSOM, and a FNNS algorithm to find two best matching units were used. For evaluation purposes, Aurora 2 and NOIZEUS databases were used. Experimental results indicate that the model is robust to noise without Oracle knowledge.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new adaptive speech model for Missing-Feature Reconstruction using unsupervised learning for speech recognition. Hence, a neural network with time-varying structure, LARFSOM, and a FNNS algorithm to find two best matching units were used. For evaluation purposes, Aurora 2 and NOIZEUS databases were used. Experimental results indicate that the model is robust to noise without Oracle knowledge.
缺失特征重建的自适应语音模型
提出了一种基于无监督学习的语音识别自适应缺失特征重建模型。因此,我们使用了具有时变结构的神经网络LARFSOM和FNNS算法来寻找两个最佳匹配单元。为了评估目的,使用了Aurora 2和NOIZEUS数据库。实验结果表明,该模型在不需要Oracle知识的情况下对噪声具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信