Porosity of Generalized Mutually Maximization Problem

Ni Ren-xing
{"title":"Porosity of Generalized Mutually Maximization Problem","authors":"Ni Ren-xing","doi":"10.1109/ICIC.2010.64","DOIUrl":null,"url":null,"abstract":"Let C be a closed bounded convex subset of a Banach space X with 0 being an interior point of C and pC(.) be the Minkowski functional with respect to C. A generalized mutually maximization problem is said to be well posed if it has a unique solution (x, z) and every maximizing sequence converges strongly to (x, z). Under the assumption that the modulus of convexity with respect to pC(.) is strictly positive, we show that the collection of all subsets in the admissible family such that the generalized mutually maximization problem fail to be well-posed is porous in the admissible family. These extend and sharpen some recent results due to De Blasi, Myjak and Papini, Li, Li and Xu, and Ni, etc.","PeriodicalId":176212,"journal":{"name":"2010 Third International Conference on Information and Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2010.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let C be a closed bounded convex subset of a Banach space X with 0 being an interior point of C and pC(.) be the Minkowski functional with respect to C. A generalized mutually maximization problem is said to be well posed if it has a unique solution (x, z) and every maximizing sequence converges strongly to (x, z). Under the assumption that the modulus of convexity with respect to pC(.) is strictly positive, we show that the collection of all subsets in the admissible family such that the generalized mutually maximization problem fail to be well-posed is porous in the admissible family. These extend and sharpen some recent results due to De Blasi, Myjak and Papini, Li, Li and Xu, and Ni, etc.
广义相互最大化问题的孔隙度
设C是Banach空间X的一个封闭有界凸子集,其中0是C的一个内点,pC(.)是关于C的Minkowski泛函。如果一个广义的互极大问题有一个唯一解(X, z),并且每个极大值序列都强收敛于(X, z),那么它就是适定的。在关于pC(.)的凸模是严格正的假设下,我们证明了使得广义互极大问题不能被适定的可容许族中所有子集的集合在可容许族中是多孔的。这些扩展和强化了De Blasi、Myjak和Papini、Li、Li和Xu以及Ni等人最近的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信