In Search of the Performance- and Energy-Efficient CNN Accelerators

S. Sedukhin, Yoichi Tomioka, Kohei Yamamoto
{"title":"In Search of the Performance- and Energy-Efficient CNN Accelerators","authors":"S. Sedukhin, Yoichi Tomioka, Kohei Yamamoto","doi":"10.1109/COOLCHIPS52128.2021.9410350","DOIUrl":null,"url":null,"abstract":"In this paper, starting from the algorithm, a performance- and energy-efficient 3D structure or shape of the Tensor Processing Engine (TPE) for CNN acceleration is systematically searched and evaluated. An optimal accelerator's shape maximizes the number of concurrent MAC operations per clock cycle while minimizes the number of redundant operations. The proposed 3D vector-parallel TPE architecture with an optimal shape can be very efficiently used for considerable CNN acceleration. Due to inter-block image data independency, it is possible to use multiple of such TPEs for the additional CNN acceleration. Moreover, it was shown that proposed TPE can also be uniformly used for acceleration of the different CNN models such as VGG, ResNet, YOLO and SSD.","PeriodicalId":103337,"journal":{"name":"2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COOLCHIPS52128.2021.9410350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, starting from the algorithm, a performance- and energy-efficient 3D structure or shape of the Tensor Processing Engine (TPE) for CNN acceleration is systematically searched and evaluated. An optimal accelerator's shape maximizes the number of concurrent MAC operations per clock cycle while minimizes the number of redundant operations. The proposed 3D vector-parallel TPE architecture with an optimal shape can be very efficiently used for considerable CNN acceleration. Due to inter-block image data independency, it is possible to use multiple of such TPEs for the additional CNN acceleration. Moreover, it was shown that proposed TPE can also be uniformly used for acceleration of the different CNN models such as VGG, ResNet, YOLO and SSD.
寻找性能和节能的CNN加速器
本文从该算法出发,系统地搜索并评价了用于CNN加速的张量处理引擎(TPE)的一种性能优异且节能的三维结构或形状。最佳加速器的形状可以使每个时钟周期内并发MAC操作的数量最大化,同时使冗余操作的数量最小化。所提出的具有最优形状的三维矢量并行TPE结构可以非常有效地用于相当大的CNN加速度。由于块间图像数据的独立性,可以使用多个这样的tpe来进行额外的CNN加速。此外,所提出的TPE还可以统一用于VGG、ResNet、YOLO和SSD等不同CNN模型的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信