Prediction in real-time control using adaptive networks with on-line learning

W. Brockmann, O. Huwendiek
{"title":"Prediction in real-time control using adaptive networks with on-line learning","authors":"W. Brockmann, O. Huwendiek","doi":"10.1109/CCA.1994.381366","DOIUrl":null,"url":null,"abstract":"Adaptive systems are useful in many process control applications. Especially neurofuzzy systems are of interest because they may be applicable in safety-critical domains. But to cope with large input numbers, it is necessary to split such systems into a network. Such an approach, the NeuroFuzzy Network (NFN), is outlined. Its use is demonstrated by modeling a biological reactor in order to use a one-step prediction for correcting destroyed measurement values. The training of the NFN is done on-line by exploiting the power of a multiprocessor system. Investigations show the improvements and limitations of parallel processing for on-line learning in adaptive networks.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Adaptive systems are useful in many process control applications. Especially neurofuzzy systems are of interest because they may be applicable in safety-critical domains. But to cope with large input numbers, it is necessary to split such systems into a network. Such an approach, the NeuroFuzzy Network (NFN), is outlined. Its use is demonstrated by modeling a biological reactor in order to use a one-step prediction for correcting destroyed measurement values. The training of the NFN is done on-line by exploiting the power of a multiprocessor system. Investigations show the improvements and limitations of parallel processing for on-line learning in adaptive networks.<>
在线学习的自适应网络实时控制预测
自适应系统在许多过程控制应用中都很有用。神经模糊系统尤其令人感兴趣,因为它们可能适用于安全关键领域。但是为了处理大量的输入数据,有必要将这样的系统分割成一个网络。本文概述了这种方法——神经模糊网络(NFN)。通过对一个生物反应器进行建模,证明了它的用途,以便使用一步预测来纠正损坏的测量值。神经网络的训练是利用多处理器系统的能力在线完成的。研究表明并行处理在自适应网络在线学习中的改进和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信