A new fast-learning algorithm for predicting power system stability

A. Daoud, G. Karady, R. Amin
{"title":"A new fast-learning algorithm for predicting power system stability","authors":"A. Daoud, G. Karady, R. Amin","doi":"10.1109/PESW.2001.916916","DOIUrl":null,"url":null,"abstract":"This paper presents a new fast learning, online method for the prediction of power system transient instability and an example of its application to a single machine and infinite bus. The proposed algorithm is adapted from a proven robotic ball-catching algorithm, which includes fast learning. For instability prediction, the ball location is replaced by measured relative generator rotor angle. Using the measured relative rotor angle, the control algorithm predicts the rotor angle at a future time. The relative rotor angle is sampled at a rate of 600 times per second. This new fast learning algorithm predicts the rotor angle 500 milliseconds into the future. The increase of the generator relative rotor angle beyond a predetermined threshold is a prediction that loss of synchronism will occur. When loss of synchronism is predicted a protection scheme can initiate a stability aid such as generator tripping, braking resistor and/or fast valving.","PeriodicalId":253534,"journal":{"name":"2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESW.2001.916916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a new fast learning, online method for the prediction of power system transient instability and an example of its application to a single machine and infinite bus. The proposed algorithm is adapted from a proven robotic ball-catching algorithm, which includes fast learning. For instability prediction, the ball location is replaced by measured relative generator rotor angle. Using the measured relative rotor angle, the control algorithm predicts the rotor angle at a future time. The relative rotor angle is sampled at a rate of 600 times per second. This new fast learning algorithm predicts the rotor angle 500 milliseconds into the future. The increase of the generator relative rotor angle beyond a predetermined threshold is a prediction that loss of synchronism will occur. When loss of synchronism is predicted a protection scheme can initiate a stability aid such as generator tripping, braking resistor and/or fast valving.
一种新的电力系统稳定预测快速学习算法
本文提出了一种快速在线学习的电力系统暂态不稳定预测新方法,并给出了该方法在单机和无限母线上的应用实例。该算法改编自一种成熟的机器人接球算法,具有快速学习的特点。对于不稳定性预测,用测量的相对发电机转子角度代替球的位置。该控制算法利用实测的转子相对角度,预测未来时刻的转子角度。相对转子角度以每秒600次的速率采样。这种新的快速学习算法预测了未来500毫秒的转子角度。发电机相对转子角的增加超过预定阈值是对将发生失同步的预测。当预测到失同步时,保护方案可以启动稳定辅助装置,如发电机跳闸、制动电阻和/或快速阀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信